Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29317638
PubMed Central
PMC5760619
DOI
10.1038/s41467-017-02635-5
PII: 10.1038/s41467-017-02635-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Scanning probe microscopy has been extensively applied to probe interfacial water in many interdisciplinary fields but the disturbance of the probes on the hydrogen-bonding structure of water has remained an intractable problem. Here, we report submolecular-resolution imaging of the water clusters on a NaCl(001) surface within the nearly noninvasive region by a qPlus-based noncontact atomic force microscopy. Comparison with theoretical simulations reveals that the key lies in probing the weak high-order electrostatic force between the quadrupole-like CO-terminated tip and the polar water molecules at large tip-water distances. This interaction allows the imaging and structural determination of the weakly bonded water clusters and even of their metastable states with negligible disturbance. This work may open an avenue for studying the intrinsic structure and dynamics of ice or water on surfaces, ion hydration, and biological water with atomic precision.
Collaborative Innovation Center of Quantum Matter Beijing 100871 China
Institute of Physics The Czech Academy of Sciences Cukrovarnická 10 162 00 Prague Czech Republic
International Center for Quantum Materials School of Physics Peking University Beijing 100871 China
RCPTM Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
Zobrazit více v PubMed
Henderson MA. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 2002;46:1–308. doi: 10.1016/S0167-5729(01)00020-6. DOI
Hodgson A, Haq S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 2009;64:381–451. doi: 10.1016/j.surfrep.2009.07.001. DOI
Thiel PA, Madey TE. The interaction of water with solid surfaces: fundamental aspects. Surf. Sci. Rep. 1987;7:211–385. doi: 10.1016/0167-5729(87)90001-X. DOI
Carrasco J, Hodgson A, Michaelides A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012;11:667–674. doi: 10.1038/nmat3354. PubMed DOI
Verdaguer A, Sacha GM, Bluhm H, Salmeron M. Molecular structure of water at interfaces: wetting at the nanometer scale. Chem. Rev. 2006;106:1478–1510. doi: 10.1021/cr040376l. PubMed DOI
Michaelides A, Morgenstern K. Ice nanoclusters at hydrophobic metal surfaces. Nat. Mater. 2007;6:597–601. doi: 10.1038/nmat1940. PubMed DOI
Carrasco J, et al. A one-dimensional ice structure built from pentagons. Nat. Mater. 2009;8:427–431. doi: 10.1038/nmat2403. PubMed DOI
Shin HJ, et al. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nat. Mater. 2010;9:442–447. doi: 10.1038/nmat2740. PubMed DOI
Hammer B, Wendt S, Besenbacher F. Water adsorption on TiO2. Top Catal. 2010;53:423–430. doi: 10.1007/s11244-010-9454-3. DOI
Nie S, Feibelman PJ, Bartelt NC, Thuermer K. Pentagons and heptagons in the first water layer on Pt(111) Phys. Rev. Lett. 2010;105:026102. doi: 10.1103/PhysRevLett.105.026102. PubMed DOI
Kumagai T, et al. H-atom relay reactions in real space. Nat. Mater. 2012;11:167–172. doi: 10.1038/nmat3176. PubMed DOI
Guo J, et al. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 2014;13:184–189. doi: 10.1038/nmat3848. PubMed DOI
Merte LR, et al. Water clustering on nanostructured iron oxide films. Nat. Commun. 2014;5:4193. doi: 10.1038/ncomms5193. PubMed DOI
Chen J, et al. An unconventional bilayer ice structure on a NaCl(001) film. Nat. Commun. 2014;5:4056. PubMed
Meng X, et al. Direct visualization of concerted proton tunnelling in a water nanocluster. Nat. Phys. 2015;11:235–239. doi: 10.1038/nphys3225. DOI
Halwidl D, et al. Adsorption of water at the SrO surface of ruthenates. Nat. Mater. 2016;15:450–455. doi: 10.1038/nmat4512. PubMed DOI PMC
Xu K, Cao P, Heath JR. Graphene visualizes the first water adlayers on mica at ambient conditions. Science. 2010;329:1188–1191. doi: 10.1126/science.1192907. PubMed DOI
Fukuma T, Ueda Y, Yoshioka S, Asakawa H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 2010;104:016101. doi: 10.1103/PhysRevLett.104.016101. PubMed DOI
Kimura K, et al. Visualizing water molecule distribution by atomic force microscopy. J. Chem. Phys. 2010;132:194705. doi: 10.1063/1.3408289. PubMed DOI
Thuermer K, Nie S. Formation of hexagonal and cubic ice during low-temperature growth. Proc. Natl Acad. Sci. USA. 2013;110:11757–11762. doi: 10.1073/pnas.1303001110. PubMed DOI PMC
Shiotari A, Sugimoto Y. Ultrahigh-resolution imaging of water networks by atomic force microscopy. Nat. Commun. 2017;8:14313. doi: 10.1038/ncomms14313. PubMed DOI PMC
Pang CL, et al. Noncontact atomic force microscopy imaging of water dissociation products on TiO2(110) Phys. Rev. B. 2006;74:073411. doi: 10.1103/PhysRevB.74.073411. DOI
Hu J, Xiao XD, Ogletree DF, Salmeron M. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science. 1995;268:267–269. doi: 10.1126/science.268.5208.267. PubMed DOI
Giessibl FJ. Advances in atomic force microscopy. Rev. Mod. Phys. 2003;75:949–983. doi: 10.1103/RevModPhys.75.949. DOI
Gross L, et al. The chemical structure of a molecule resolved by atomic force microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Albrecht F, et al. Formation and characterization of a molecule-metal-molecule bridge in real space. J. Am. Chem. Soc. 2013;135:9200–9203. doi: 10.1021/ja404084p. PubMed DOI
Zhang J, et al. Real-space identification of intermolecular bonding with atomic force microscopy. Science. 2013;342:611–614. doi: 10.1126/science.1242603. PubMed DOI
Kawai S, et al. Van der Waals interactions and the limits of isolated atom models at interfaces. Nat. Commun. 2016;7:11559. doi: 10.1038/ncomms11559. PubMed DOI PMC
Hämäläinen SK, et al. Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev. Lett. 2014;113:186102. doi: 10.1103/PhysRevLett.113.186102. PubMed DOI
Gross L, et al. Bond-order discrimination by atomic force microscopy. Science. 2012;337:1326–1329. doi: 10.1126/science.1225621. PubMed DOI
de Oteyza DG, et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science. 2013;340:1434–1437. doi: 10.1126/science.1238187. PubMed DOI
Mohn F, Gross L, Moll N, Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 2012;7:227–231. doi: 10.1038/nnano.2012.20. PubMed DOI
Ternes M, et al. The force needed to move an atom on a surface. Science. 2008;319:1066–1069. doi: 10.1126/science.1150288. PubMed DOI
Emmrich M, et al. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science. 2015;348:308–311. doi: 10.1126/science.aaa5329. PubMed DOI
Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. PubMed DOI
Hapala P, et al. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nat. Commun. 2016;7:11560. doi: 10.1038/ncomms11560. PubMed DOI PMC
Ellner M, et al. The electric field of CO tips and its relevance for atomic force microscopy. Nano Lett. 2016;16:1974–1980. doi: 10.1021/acs.nanolett.5b05251. PubMed DOI
Chiang Cl, Xu C, Han Z, Ho W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science. 2014;344:885–888. doi: 10.1126/science.1253405. PubMed DOI
Hapala P, Temirov R, Tautz FS, Jelinek P. Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett. 2014;113:226101. doi: 10.1103/PhysRevLett.113.226101. PubMed DOI
Guo J, et al. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science. 2016;352:321–325. doi: 10.1126/science.aaf2042. PubMed DOI
Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Klimes J, Bowler DR, Michaelides A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter. 2010;22:022201. doi: 10.1088/0953-8984/22/2/022201. PubMed DOI
Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000;113:9901–9904. doi: 10.1063/1.1329672. DOI
Water Structures Reveal Local Hydrophobicity on the In2O3(111) Surface
Sub-angstrom noninvasive imaging of atomic arrangement in 2D hybrid perovskites
Nitrous oxide as an effective AFM tip functionalization: a comparative study
Iron-based trinuclear metal-organic nanostructures on a surface with local charge accumulation