Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy

. 2018 Jan 09 ; 9 (1) : 122. [epub] 20180109

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29317638
Odkazy

PubMed 29317638
PubMed Central PMC5760619
DOI 10.1038/s41467-017-02635-5
PII: 10.1038/s41467-017-02635-5
Knihovny.cz E-zdroje

Scanning probe microscopy has been extensively applied to probe interfacial water in many interdisciplinary fields but the disturbance of the probes on the hydrogen-bonding structure of water has remained an intractable problem. Here, we report submolecular-resolution imaging of the water clusters on a NaCl(001) surface within the nearly noninvasive region by a qPlus-based noncontact atomic force microscopy. Comparison with theoretical simulations reveals that the key lies in probing the weak high-order electrostatic force between the quadrupole-like CO-terminated tip and the polar water molecules at large tip-water distances. This interaction allows the imaging and structural determination of the weakly bonded water clusters and even of their metastable states with negligible disturbance. This work may open an avenue for studying the intrinsic structure and dynamics of ice or water on surfaces, ion hydration, and biological water with atomic precision.

Zobrazit více v PubMed

Henderson MA. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 2002;46:1–308. doi: 10.1016/S0167-5729(01)00020-6. DOI

Hodgson A, Haq S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 2009;64:381–451. doi: 10.1016/j.surfrep.2009.07.001. DOI

Thiel PA, Madey TE. The interaction of water with solid surfaces: fundamental aspects. Surf. Sci. Rep. 1987;7:211–385. doi: 10.1016/0167-5729(87)90001-X. DOI

Carrasco J, Hodgson A, Michaelides A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012;11:667–674. doi: 10.1038/nmat3354. PubMed DOI

Verdaguer A, Sacha GM, Bluhm H, Salmeron M. Molecular structure of water at interfaces: wetting at the nanometer scale. Chem. Rev. 2006;106:1478–1510. doi: 10.1021/cr040376l. PubMed DOI

Michaelides A, Morgenstern K. Ice nanoclusters at hydrophobic metal surfaces. Nat. Mater. 2007;6:597–601. doi: 10.1038/nmat1940. PubMed DOI

Carrasco J, et al. A one-dimensional ice structure built from pentagons. Nat. Mater. 2009;8:427–431. doi: 10.1038/nmat2403. PubMed DOI

Shin HJ, et al. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nat. Mater. 2010;9:442–447. doi: 10.1038/nmat2740. PubMed DOI

Hammer B, Wendt S, Besenbacher F. Water adsorption on TiO2. Top Catal. 2010;53:423–430. doi: 10.1007/s11244-010-9454-3. DOI

Nie S, Feibelman PJ, Bartelt NC, Thuermer K. Pentagons and heptagons in the first water layer on Pt(111) Phys. Rev. Lett. 2010;105:026102. doi: 10.1103/PhysRevLett.105.026102. PubMed DOI

Kumagai T, et al. H-atom relay reactions in real space. Nat. Mater. 2012;11:167–172. doi: 10.1038/nmat3176. PubMed DOI

Guo J, et al. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 2014;13:184–189. doi: 10.1038/nmat3848. PubMed DOI

Merte LR, et al. Water clustering on nanostructured iron oxide films. Nat. Commun. 2014;5:4193. doi: 10.1038/ncomms5193. PubMed DOI

Chen J, et al. An unconventional bilayer ice structure on a NaCl(001) film. Nat. Commun. 2014;5:4056. PubMed

Meng X, et al. Direct visualization of concerted proton tunnelling in a water nanocluster. Nat. Phys. 2015;11:235–239. doi: 10.1038/nphys3225. DOI

Halwidl D, et al. Adsorption of water at the SrO surface of ruthenates. Nat. Mater. 2016;15:450–455. doi: 10.1038/nmat4512. PubMed DOI PMC

Xu K, Cao P, Heath JR. Graphene visualizes the first water adlayers on mica at ambient conditions. Science. 2010;329:1188–1191. doi: 10.1126/science.1192907. PubMed DOI

Fukuma T, Ueda Y, Yoshioka S, Asakawa H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 2010;104:016101. doi: 10.1103/PhysRevLett.104.016101. PubMed DOI

Kimura K, et al. Visualizing water molecule distribution by atomic force microscopy. J. Chem. Phys. 2010;132:194705. doi: 10.1063/1.3408289. PubMed DOI

Thuermer K, Nie S. Formation of hexagonal and cubic ice during low-temperature growth. Proc. Natl Acad. Sci. USA. 2013;110:11757–11762. doi: 10.1073/pnas.1303001110. PubMed DOI PMC

Shiotari A, Sugimoto Y. Ultrahigh-resolution imaging of water networks by atomic force microscopy. Nat. Commun. 2017;8:14313. doi: 10.1038/ncomms14313. PubMed DOI PMC

Pang CL, et al. Noncontact atomic force microscopy imaging of water dissociation products on TiO2(110) Phys. Rev. B. 2006;74:073411. doi: 10.1103/PhysRevB.74.073411. DOI

Hu J, Xiao XD, Ogletree DF, Salmeron M. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science. 1995;268:267–269. doi: 10.1126/science.268.5208.267. PubMed DOI

Giessibl FJ. Advances in atomic force microscopy. Rev. Mod. Phys. 2003;75:949–983. doi: 10.1103/RevModPhys.75.949. DOI

Gross L, et al. The chemical structure of a molecule resolved by atomic force microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI

Albrecht F, et al. Formation and characterization of a molecule-metal-molecule bridge in real space. J. Am. Chem. Soc. 2013;135:9200–9203. doi: 10.1021/ja404084p. PubMed DOI

Zhang J, et al. Real-space identification of intermolecular bonding with atomic force microscopy. Science. 2013;342:611–614. doi: 10.1126/science.1242603. PubMed DOI

Kawai S, et al. Van der Waals interactions and the limits of isolated atom models at interfaces. Nat. Commun. 2016;7:11559. doi: 10.1038/ncomms11559. PubMed DOI PMC

Hämäläinen SK, et al. Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev. Lett. 2014;113:186102. doi: 10.1103/PhysRevLett.113.186102. PubMed DOI

Gross L, et al. Bond-order discrimination by atomic force microscopy. Science. 2012;337:1326–1329. doi: 10.1126/science.1225621. PubMed DOI

de Oteyza DG, et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science. 2013;340:1434–1437. doi: 10.1126/science.1238187. PubMed DOI

Mohn F, Gross L, Moll N, Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 2012;7:227–231. doi: 10.1038/nnano.2012.20. PubMed DOI

Ternes M, et al. The force needed to move an atom on a surface. Science. 2008;319:1066–1069. doi: 10.1126/science.1150288. PubMed DOI

Emmrich M, et al. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science. 2015;348:308–311. doi: 10.1126/science.aaa5329. PubMed DOI

Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. PubMed DOI

Hapala P, et al. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nat. Commun. 2016;7:11560. doi: 10.1038/ncomms11560. PubMed DOI PMC

Ellner M, et al. The electric field of CO tips and its relevance for atomic force microscopy. Nano Lett. 2016;16:1974–1980. doi: 10.1021/acs.nanolett.5b05251. PubMed DOI

Chiang Cl, Xu C, Han Z, Ho W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science. 2014;344:885–888. doi: 10.1126/science.1253405. PubMed DOI

Hapala P, Temirov R, Tautz FS, Jelinek P. Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett. 2014;113:226101. doi: 10.1103/PhysRevLett.113.226101. PubMed DOI

Guo J, et al. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science. 2016;352:321–325. doi: 10.1126/science.aaf2042. PubMed DOI

Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Klimes J, Bowler DR, Michaelides A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter. 2010;22:022201. doi: 10.1088/0953-8984/22/2/022201. PubMed DOI

Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000;113:9901–9904. doi: 10.1063/1.1329672. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...