Mapping the electrostatic force field of single molecules from high-resolution scanning probe images
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27230940
PubMed Central
PMC4894979
DOI
10.1038/ncomms11560
PII: ncomms11560
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
How electronic charge is distributed over a molecule determines to a large extent its chemical properties. Here, we demonstrate how the electrostatic force field, originating from the inhomogeneous charge distribution in a molecule, can be measured with submolecular resolution. We exploit the fact that distortions typically observed in high-resolution atomic force microscopy images are for a significant part caused by the electrostatic force acting between charges of the tip and the molecule of interest. By finding a geometrical transformation between two high-resolution AFM images acquired with two different tips, the electrostatic force field or potential over individual molecules and self-assemblies thereof can be reconstructed with submolecular resolution.
Zobrazit více v PubMed
Repp J., Meyer G., Stojkovic S. M., Gourdon A. & Joachim C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005). PubMed
Gross L., Mohn F., Moll N., Liljeroth P. & Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009). PubMed
Temirov R., Soubatch S., Neucheva O., Lassise A. C. & Tautz F. S. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J. Phys. 10, 053012 (2008).
Chiang C. l., Xu C., Han Z. & Ho W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344, 885–888 (2014). PubMed
Gross L. et al.. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012). PubMed
Gross L. Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 3, 273–278 (2011). PubMed
Emmrich M. et al.. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science 348, 308–311 (2015). PubMed
Sweetman A. et al.. Intramolecular bonds resolved on a semiconductor surface. Phys. Rev. B 90, 165425 (2014).
Iwata K. et al.. Chemical structure imaging of a single molecule by atomic force microscopy at room temperature. Nat. Commun. 6, 7766 (2015). PubMed PMC
Moreno C., Stetsovych O., Shimizu T. K. & Custance O. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy. Nano Lett. 15, 2257–2262 (2015). PubMed
Huber F. et al.. Intramolecular force contrast and dynamic current-distance measurements at room temperature. Phys. Rev. Lett. 115, 066101 (2015). PubMed
de Oteyza D. G. et al.. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013). PubMed
Pavlicek N. et al.. Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway. Phys. Rev. Lett. 108, 08610 (2012). PubMed
Kawai S. et al.. Obtaining detailed structural information about supramolecular systems on surfaces by combining high-resolution force microscopy with ab initio calculations. ACS Nano 7, 9098–9105 (2013). PubMed
Schuler B., Meyer G., Peña D., Mullins O. C. & Gross L. Unraveling the molecular structures of asphaltenes by atomic force microscopy. J. Am. Chem. Soc. 137, 9870–9876 (2015). PubMed
Pavlicek N. et al.. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015). PubMed
Dienel T. et al.. Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett. 15, 5185–5190 (2015). PubMed
Clayden J., Greeves N. & Warren S. Organic Chemistry Oxford University Press (2001).
Nonnenmacher M., O'Boyle M. P. & Wickramasinghe H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921 (1991).
Mohn F., Gross L., Moll N. & Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012). PubMed
Baier R., Leendertz C., Lux-Steiner M. C. & Sadewasser S. Toward quantitative Kelvin probe force microscopy of nanoscale potential distributions. Phys. Rev. B 85, 165436 (2012).
Enevoldsen G. H., Glatzel T., Christensen M. C., Lauritsen J. V. & Besenbacher F. Atomic scale kelvin probe force microscopy studies of the surface potential variations on the TiO2(110) surface. Phys. Rev. Lett. 100, 236104 (2008). PubMed
Sadewasser S. et al.. New insights on atomic-resolution frequency-modulation kelvin-probe force-microscopy imaging of semiconductors. Phys. Rev. Lett. 103, 266103 (2009). PubMed
Schuler B. et al.. Contrast formation in Kelvin probe force microscopy of single π-conjugated molecules. Nano Lett. 14, 3342–3346 (2014). PubMed
Neff J. L. & Rahe P. Insights into Kelvin probe force microscopy data of insulator-supported molecules. Phys. Rev. B 91, 085424 (2015).
Corso M. et al.. Charge redistribution and transport in molecular contacts. Phys. Rev. Lett. 115, 136101 (2015). PubMed
Weymouth A., Wutscher T., Welker J., Hofmann T. & Giessibl F. Phantom force induced by tunneling current: a characterization on Si(111). Phys. Rev. Lett. 106, 226801 (2011). PubMed
Albrecht F. et al.. Probing charges on the atomic scale by means of atomic force microscopy. Phys. Rev. Lett. 115, 076101 (2015). PubMed
Wagner C. et al.. Scanning quantum dot microscopy. Phys. Rev. Lett. 115, 026101 (2015). PubMed
Bartels L. et al.. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004 (1998).
Welker J. & Giessibl F. J. Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science 336, 444–449 (2012). PubMed
Mohn F., Schuler B., Gross L. & Meyer G. Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett. 102, 073109 (2013).
Moll N., Gross L., Mohn F., Curioni A. & Meyer G. The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J. Phys. 12, 125020 (2010).
Hapala P. et al.. The mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).
Hapala P., Temirov R., Tautz F. S. & Jelinek P. Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett. 113, 226101 (2014). PubMed
Guo C., Xin X., Van Hove M. A., Ren X. & Zhao Y. Origin of the contrast interpreted as intermolecular and intramolecular bonds in atomic force microscopy images. J. Phys. Chem. C 119, 14195–14200 (2015).
van der Lit J., Di Cicco F., Hapala P., Jelinek P. & Swart I. Submolecular resolution imaging of molecules by atomic force microscopy: the influence of the electrostatic force. Phys. Rev. Lett. 105, 096102 (2016). PubMed
Boneschanscher M. P., Hämäläinen S. K., Liljeroth P. & Swart I. Sample corrugation affects the apparent bond lengths in atomic force microscopy. ACS Nano 8, 3006–3014 (2014). PubMed
Neu M. et al.. Image correction for atomic force microscopy images with functionalized tips. Phys. Rev. B 89, 205407 (2014).
Zhang J. et al.. Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013). PubMed
Sweetman A. M. et al.. Mapping the force field of a hydrogen-bonded assembly. Nat. Commun. 5, 3931 (2014). PubMed PMC
Moll N. et al.. Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips. Nano Lett. 14, 6127–6131 (2014). PubMed
Hämäläinen S. K. et al.. Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev. Lett. 113, 186102 (2014). PubMed
Kawai S. et al.. Extended halogen bonding between fully fluorinated aromatic molecules. ACS Nano 9, 2574–2583 (2015). PubMed
Jarvis S. P. et al.. Intermolecular artifacts in probe microscope images of C60 assemblies. Phys. Rev. B 92, 241405 (2015).
Gao D. Z. et al.. Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms. ACS Nano 8, 5339–5351 (2014). PubMed
Sun Z., Boneschanscher M., Swart I., Vanmaekelbergh D. & Liljeroth P. Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys. Rev. Lett. 106, 046104 (2011). PubMed
Weymouth A. J., Hofmann T. & Giessibl F. J. Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343, 1120–1122 (2014). PubMed
Gross L. et al.. Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips. Phys. Rev. B 90, 155455 (2014).
Ellner M. et al.. The electric field of CO tips and its relevance for atomic force microscopy. Nano Lett. 16, 1974–1980 (2016). PubMed
Eigler D. M., Lutz C. P. & Rudge W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600–603 (1991).
Bartels L., Meyer G. & Rieder K.-H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: a route to chemical contrast. Appl. Phys. Lett. 71, 213–215 (1997).
Giessibl F. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949 (2003).
Rohlfing M., Temirov R. & Tautz F. Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111). Phys. Rev. B 76, 115421 (2007).
Kresse G. & Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). PubMed
Perdew J. P. et al.. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). PubMed
Kresse G. & Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Blum V. et al.. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).
Perdew J. P., Burke K. & Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed
Tkatchenko A. & Scheffler M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009). PubMed
Water Structures Reveal Local Hydrophobicity on the In2O3(111) Surface
Nitrous oxide as an effective AFM tip functionalization: a comparative study
Iron-based trinuclear metal-organic nanostructures on a surface with local charge accumulation
Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene