Mapping the electrostatic force field of single molecules from high-resolution scanning probe images

. 2016 May 27 ; 7 () : 11560. [epub] 20160527

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27230940

How electronic charge is distributed over a molecule determines to a large extent its chemical properties. Here, we demonstrate how the electrostatic force field, originating from the inhomogeneous charge distribution in a molecule, can be measured with submolecular resolution. We exploit the fact that distortions typically observed in high-resolution atomic force microscopy images are for a significant part caused by the electrostatic force acting between charges of the tip and the molecule of interest. By finding a geometrical transformation between two high-resolution AFM images acquired with two different tips, the electrostatic force field or potential over individual molecules and self-assemblies thereof can be reconstructed with submolecular resolution.

Zobrazit více v PubMed

Repp J., Meyer G., Stojkovic S. M., Gourdon A. & Joachim C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005). PubMed

Gross L., Mohn F., Moll N., Liljeroth P. & Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009). PubMed

Temirov R., Soubatch S., Neucheva O., Lassise A. C. & Tautz F. S. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J. Phys. 10, 053012 (2008).

Chiang C. l., Xu C., Han Z. & Ho W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344, 885–888 (2014). PubMed

Gross L. et al.. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012). PubMed

Gross L. Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 3, 273–278 (2011). PubMed

Emmrich M. et al.. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science 348, 308–311 (2015). PubMed

Sweetman A. et al.. Intramolecular bonds resolved on a semiconductor surface. Phys. Rev. B 90, 165425 (2014).

Iwata K. et al.. Chemical structure imaging of a single molecule by atomic force microscopy at room temperature. Nat. Commun. 6, 7766 (2015). PubMed PMC

Moreno C., Stetsovych O., Shimizu T. K. & Custance O. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy. Nano Lett. 15, 2257–2262 (2015). PubMed

Huber F. et al.. Intramolecular force contrast and dynamic current-distance measurements at room temperature. Phys. Rev. Lett. 115, 066101 (2015). PubMed

de Oteyza D. G. et al.. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013). PubMed

Pavlicek N. et al.. Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway. Phys. Rev. Lett. 108, 08610 (2012). PubMed

Kawai S. et al.. Obtaining detailed structural information about supramolecular systems on surfaces by combining high-resolution force microscopy with ab initio calculations. ACS Nano 7, 9098–9105 (2013). PubMed

Schuler B., Meyer G., Peña D., Mullins O. C. & Gross L. Unraveling the molecular structures of asphaltenes by atomic force microscopy. J. Am. Chem. Soc. 137, 9870–9876 (2015). PubMed

Pavlicek N. et al.. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015). PubMed

Dienel T. et al.. Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett. 15, 5185–5190 (2015). PubMed

Clayden J., Greeves N. & Warren S. Organic Chemistry Oxford University Press (2001).

Nonnenmacher M., O'Boyle M. P. & Wickramasinghe H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921 (1991).

Mohn F., Gross L., Moll N. & Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012). PubMed

Baier R., Leendertz C., Lux-Steiner M. C. & Sadewasser S. Toward quantitative Kelvin probe force microscopy of nanoscale potential distributions. Phys. Rev. B 85, 165436 (2012).

Enevoldsen G. H., Glatzel T., Christensen M. C., Lauritsen J. V. & Besenbacher F. Atomic scale kelvin probe force microscopy studies of the surface potential variations on the TiO2(110) surface. Phys. Rev. Lett. 100, 236104 (2008). PubMed

Sadewasser S. et al.. New insights on atomic-resolution frequency-modulation kelvin-probe force-microscopy imaging of semiconductors. Phys. Rev. Lett. 103, 266103 (2009). PubMed

Schuler B. et al.. Contrast formation in Kelvin probe force microscopy of single π-conjugated molecules. Nano Lett. 14, 3342–3346 (2014). PubMed

Neff J. L. & Rahe P. Insights into Kelvin probe force microscopy data of insulator-supported molecules. Phys. Rev. B 91, 085424 (2015).

Corso M. et al.. Charge redistribution and transport in molecular contacts. Phys. Rev. Lett. 115, 136101 (2015). PubMed

Weymouth A., Wutscher T., Welker J., Hofmann T. & Giessibl F. Phantom force induced by tunneling current: a characterization on Si(111). Phys. Rev. Lett. 106, 226801 (2011). PubMed

Albrecht F. et al.. Probing charges on the atomic scale by means of atomic force microscopy. Phys. Rev. Lett. 115, 076101 (2015). PubMed

Wagner C. et al.. Scanning quantum dot microscopy. Phys. Rev. Lett. 115, 026101 (2015). PubMed

Bartels L. et al.. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004 (1998).

Welker J. & Giessibl F. J. Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science 336, 444–449 (2012). PubMed

Mohn F., Schuler B., Gross L. & Meyer G. Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett. 102, 073109 (2013).

Moll N., Gross L., Mohn F., Curioni A. & Meyer G. The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J. Phys. 12, 125020 (2010).

Hapala P. et al.. The mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

Hapala P., Temirov R., Tautz F. S. & Jelinek P. Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett. 113, 226101 (2014). PubMed

Guo C., Xin X., Van Hove M. A., Ren X. & Zhao Y. Origin of the contrast interpreted as intermolecular and intramolecular bonds in atomic force microscopy images. J. Phys. Chem. C 119, 14195–14200 (2015).

van der Lit J., Di Cicco F., Hapala P., Jelinek P. & Swart I. Submolecular resolution imaging of molecules by atomic force microscopy: the influence of the electrostatic force. Phys. Rev. Lett. 105, 096102 (2016). PubMed

Boneschanscher M. P., Hämäläinen S. K., Liljeroth P. & Swart I. Sample corrugation affects the apparent bond lengths in atomic force microscopy. ACS Nano 8, 3006–3014 (2014). PubMed

Neu M. et al.. Image correction for atomic force microscopy images with functionalized tips. Phys. Rev. B 89, 205407 (2014).

Zhang J. et al.. Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013). PubMed

Sweetman A. M. et al.. Mapping the force field of a hydrogen-bonded assembly. Nat. Commun. 5, 3931 (2014). PubMed PMC

Moll N. et al.. Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips. Nano Lett. 14, 6127–6131 (2014). PubMed

Hämäläinen S. K. et al.. Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev. Lett. 113, 186102 (2014). PubMed

Kawai S. et al.. Extended halogen bonding between fully fluorinated aromatic molecules. ACS Nano 9, 2574–2583 (2015). PubMed

Jarvis S. P. et al.. Intermolecular artifacts in probe microscope images of C60 assemblies. Phys. Rev. B 92, 241405 (2015).

Gao D. Z. et al.. Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms. ACS Nano 8, 5339–5351 (2014). PubMed

Sun Z., Boneschanscher M., Swart I., Vanmaekelbergh D. & Liljeroth P. Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys. Rev. Lett. 106, 046104 (2011). PubMed

Weymouth A. J., Hofmann T. & Giessibl F. J. Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343, 1120–1122 (2014). PubMed

Gross L. et al.. Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips. Phys. Rev. B 90, 155455 (2014).

Ellner M. et al.. The electric field of CO tips and its relevance for atomic force microscopy. Nano Lett. 16, 1974–1980 (2016). PubMed

Eigler D. M., Lutz C. P. & Rudge W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600–603 (1991).

Bartels L., Meyer G. & Rieder K.-H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: a route to chemical contrast. Appl. Phys. Lett. 71, 213–215 (1997).

Giessibl F. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949 (2003).

Rohlfing M., Temirov R. & Tautz F. Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111). Phys. Rev. B 76, 115421 (2007).

Kresse G. & Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). PubMed

Perdew J. P. et al.. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). PubMed

Kresse G. & Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Blum V. et al.. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

Perdew J. P., Burke K. & Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed

Tkatchenko A. & Scheffler M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...