Chemical structure imaging of a single molecule by atomic force microscopy at room temperature
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26178193
PubMed Central
PMC4518281
DOI
10.1038/ncomms8766
PII: ncomms8766
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Atomic force microscopy is capable of resolving the chemical structure of a single molecule on a surface. In previous research, such high resolution has only been obtained at low temperatures. Here we demonstrate that the chemical structure of a single molecule can be clearly revealed even at room temperature. 3,4,9,10-perylene tetracarboxylic dianhydride, which is strongly adsorbed onto a corner-hole site of a Si(111)-(7 × 7) surface in a bridge-like configuration is used for demonstration. Force spectroscopy combined with first-principle calculations clarifies that chemical structures can be resolved independent of tip reactivity. We show that the submolecular contrast over a central part of the molecule is achieved in the repulsive regime due to differences in the attractive van der Waals interaction and the Pauli repulsive interaction between different sites of the molecule.
Zobrazit více v PubMed
Albrecht T. R., Grütter P., Horne D. & Rugar D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991) .
Giessibl F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003) .
Morita S., Giessibl F. J., Wiesendanger R. (eds) Noncontact Atomic Force Microscopy vol.2 Springer-Verlag (2009) .
Gross L., Mohn F., Moll N., Liljeroth P. & Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009) . PubMed
Gross L. et al.. Organic structure determination using atomic resolution scanning probe microscopy. Nat. Chem. 2, 821 (2010) . PubMed
Mohn F., Gross L., Moll N. & Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012) . PubMed
Kawai S. et al.. Obtaining detailed structural information about supramolecular systems on surfaces by combining high-resolution force microscopy with ab initio calculations. ACS Nano 10, 9098 (2013) . PubMed
Gross L. et al.. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012) . PubMed
de Oteyza D. G., et al.. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013) . PubMed
Zhang J. et al.. Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013) . PubMed
Sweetman A. M. et al.. Mapping the force field of a hydrogen-bonded assembly. Nat. Commun. 5, 3931 (2014) . PubMed PMC
Hapala P. et al.. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014) .
Hamalainen S. et al.. Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev. Lett. 113, 186102 (2014) . PubMed
Weiss C., Wagner C., Temirov R. & Tautz F. Direct imaging of intermolecular bonds in scanning tunneling microscopy. J. Am. Chem. Soc. 132, 11864–11865 (2010) . PubMed
Chiang C.-L., Xu C., Han Z. & Ho W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344, 885–888 (2014) . PubMed
Sweetman A. et al.. Intramolecular bonds resolved on a semiconductor surface. Phys. Rev. B 90, 165425 (2014) .
Moreno C., Stetsovych O., Shimizu T. & Custance O. Imaging three-dimensional surface objects with submolecular. Nano Lett. 15, 2257 (2015) . PubMed
Giessibl F. J. Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 76, 1470–1472 (2000) .
Gross L. Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 3, 273–278 (2011) . PubMed
Sugimoto Y. et al.. Quantum degeneracy in atomic point contacts revealed by chemical force and conductance. Phys. Rev. Lett. 111, 106803 (2013) . PubMed
Sugimoto Y. et al.. Simultaneous AFM and STM measurements on the Si(111)-(7x7) surface. Phys. Rev. B 81, 245322 (2010) .
Morita K., Sugimoto Y., Sasagawa Y., Abe M. & Morita S. Small-amplitude dynamic force microscopy using a quartz cantilever with an optical interferometer. Nanotechnology 21, 305704 (2010) . PubMed
Nicoara N. et al.. Adsorption and electronic properties of ptcda molecules on Si(111)-(7x7): Scanning tunneling microscopy and first-principles calculations. Phys. Rev. B 82, 075402 (2010) .
Moll N., Gross L., Mohn F., Curioni A. & Meyer G. A simple model of molecular imaging with noncontact atomic force microscopy. N. J. Phys. 14, 083023 (2012) .
Sader J. E. & Jarvis S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004) .
Yurtsever A. et al.. Force mapping on a partially h-covered Si(111)-(7x7) surface: Influence of tip and surface reactivity. Phys. Rev. B 87, 155403 (2013) .
Sang H. et al.. Identifying tips for intramolecular NC-AFM imaging via in situ fingerprinting. Sci. Report 4, 6678 (2014) . PubMed PMC
Giessibl F. J. Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B 56, 16010–16015 (1997) .
Fukuma T., Ueda Y., Yoshioka S. & Asakawa H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 104, 016101 (2010) . PubMed
Ido S. et al.. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. Nat. Mater. 13, 264–270 (2014) . PubMed
Yurtsever A., Sugimoto Y., Fukumoto M., Abe M. & Morita S. Effect of tip polarity on Kelvin probe force microscopy images of thin insulator CaF2 films on Si(111). Appl. Phys. Lett. 101, 083119 (2012) .
Sugimoto Y. et al.. Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322, 413–417 (2008) . PubMed
Giessibl F. J. & Bielefeldt H. Physical interpretation of frequency-modulation atomic force microscopy. Phys. Rev. B 61, 9968–9971 (2000) .
Giessibl F., Pielmeier F., Eguchi T., An T. & Hasegawa Y. Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys. Rev. B 84, 125409 (2011) .
Kresse G. & Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996) . PubMed
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990) . PubMed
Perdew J. et al.. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992) . PubMed
Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004) . PubMed
Pou P. et al.. Structure and stability of semiconductor tip apexes for atomic force microscopy. Nanotechnology 20, 264015 (2009) . PubMed