Chemical structure imaging of a single molecule by atomic force microscopy at room temperature

. 2015 Jul 16 ; 6 () : 7766. [epub] 20150716

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26178193

Atomic force microscopy is capable of resolving the chemical structure of a single molecule on a surface. In previous research, such high resolution has only been obtained at low temperatures. Here we demonstrate that the chemical structure of a single molecule can be clearly revealed even at room temperature. 3,4,9,10-perylene tetracarboxylic dianhydride, which is strongly adsorbed onto a corner-hole site of a Si(111)-(7 × 7) surface in a bridge-like configuration is used for demonstration. Force spectroscopy combined with first-principle calculations clarifies that chemical structures can be resolved independent of tip reactivity. We show that the submolecular contrast over a central part of the molecule is achieved in the repulsive regime due to differences in the attractive van der Waals interaction and the Pauli repulsive interaction between different sites of the molecule.

Zobrazit více v PubMed

Albrecht T. R., Grütter P., Horne D. & Rugar D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991) .

Giessibl F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003) .

Morita S., Giessibl F. J., Wiesendanger R. (eds) Noncontact Atomic Force Microscopy vol.2 Springer-Verlag (2009) .

Gross L., Mohn F., Moll N., Liljeroth P. & Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009) . PubMed

Gross L. et al.. Organic structure determination using atomic resolution scanning probe microscopy. Nat. Chem. 2, 821 (2010) . PubMed

Mohn F., Gross L., Moll N. & Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012) . PubMed

Kawai S. et al.. Obtaining detailed structural information about supramolecular systems on surfaces by combining high-resolution force microscopy with ab initio calculations. ACS Nano 10, 9098 (2013) . PubMed

Gross L. et al.. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012) . PubMed

de Oteyza D. G., et al.. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013) . PubMed

Zhang J. et al.. Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013) . PubMed

Sweetman A. M. et al.. Mapping the force field of a hydrogen-bonded assembly. Nat. Commun. 5, 3931 (2014) . PubMed PMC

Hapala P. et al.. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014) .

Hamalainen S. et al.. Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev. Lett. 113, 186102 (2014) . PubMed

Weiss C., Wagner C., Temirov R. & Tautz F. Direct imaging of intermolecular bonds in scanning tunneling microscopy. J. Am. Chem. Soc. 132, 11864–11865 (2010) . PubMed

Chiang C.-L., Xu C., Han Z. & Ho W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344, 885–888 (2014) . PubMed

Sweetman A. et al.. Intramolecular bonds resolved on a semiconductor surface. Phys. Rev. B 90, 165425 (2014) .

Moreno C., Stetsovych O., Shimizu T. & Custance O. Imaging three-dimensional surface objects with submolecular. Nano Lett. 15, 2257 (2015) . PubMed

Giessibl F. J. Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 76, 1470–1472 (2000) .

Gross L. Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 3, 273–278 (2011) . PubMed

Sugimoto Y. et al.. Quantum degeneracy in atomic point contacts revealed by chemical force and conductance. Phys. Rev. Lett. 111, 106803 (2013) . PubMed

Sugimoto Y. et al.. Simultaneous AFM and STM measurements on the Si(111)-(7x7) surface. Phys. Rev. B 81, 245322 (2010) .

Morita K., Sugimoto Y., Sasagawa Y., Abe M. & Morita S. Small-amplitude dynamic force microscopy using a quartz cantilever with an optical interferometer. Nanotechnology 21, 305704 (2010) . PubMed

Nicoara N. et al.. Adsorption and electronic properties of ptcda molecules on Si(111)-(7x7): Scanning tunneling microscopy and first-principles calculations. Phys. Rev. B 82, 075402 (2010) .

Moll N., Gross L., Mohn F., Curioni A. & Meyer G. A simple model of molecular imaging with noncontact atomic force microscopy. N. J. Phys. 14, 083023 (2012) .

Sader J. E. & Jarvis S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004) .

Yurtsever A. et al.. Force mapping on a partially h-covered Si(111)-(7x7) surface: Influence of tip and surface reactivity. Phys. Rev. B 87, 155403 (2013) .

Sang H. et al.. Identifying tips for intramolecular NC-AFM imaging via in situ fingerprinting. Sci. Report 4, 6678 (2014) . PubMed PMC

Giessibl F. J. Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B 56, 16010–16015 (1997) .

Fukuma T., Ueda Y., Yoshioka S. & Asakawa H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 104, 016101 (2010) . PubMed

Ido S. et al.. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. Nat. Mater. 13, 264–270 (2014) . PubMed

Yurtsever A., Sugimoto Y., Fukumoto M., Abe M. & Morita S. Effect of tip polarity on Kelvin probe force microscopy images of thin insulator CaF2 films on Si(111). Appl. Phys. Lett. 101, 083119 (2012) .

Sugimoto Y. et al.. Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322, 413–417 (2008) . PubMed

Giessibl F. J. & Bielefeldt H. Physical interpretation of frequency-modulation atomic force microscopy. Phys. Rev. B 61, 9968–9971 (2000) .

Giessibl F., Pielmeier F., Eguchi T., An T. & Hasegawa Y. Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys. Rev. B 84, 125409 (2011) .

Kresse G. & Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996) . PubMed

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990) . PubMed

Perdew J. et al.. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992) . PubMed

Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004) . PubMed

Pou P. et al.. Structure and stability of semiconductor tip apexes for atomic force microscopy. Nanotechnology 20, 264015 (2009) . PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace