Atomically resolved imaging of the conformations and adsorption geometries of individual β-cyclodextrins with non-contact AFM
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ID:90254
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.01.01/00/22_008/0004587
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
39488518
PubMed Central
PMC11531514
DOI
10.1038/s41467-024-53555-0
PII: 10.1038/s41467-024-53555-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Glycans, consisting of covalently linked sugar units, are a major class of biopolymers essential to all known living organisms. To better understand their biological functions and further applications in fields from biomedicine to materials science, detailed knowledge of their structure is essential. However, due to the extraordinary complexity and conformational flexibility of glycans, state-of-the-art glycan analysis methods often fail to provide structural information with atomic precision. Here, we combine electrospray deposition in ultra-high vacuum with non-contact atomic force microscopy and theoretical calculations to unravel the structure of β-cyclodextrin, a cyclic glucose oligomer, with atomic-scale detail. Our results, established on the single-molecule level, reveal the different adsorption geometries and conformations of β-cyclodextrin. The position of individual hydroxy groups and the location of the stabilizing intramolecular H-bonds are deduced from atomically resolved images, enabling the unambiguous assignment of the molecular structure and demonstrating the potential of the method for glycan analysis.
Department of Biochemistry University of Oxford OX1 3QU Oxford UK
Department of Chemistry University of Oxford OX1 3QU Oxford UK
Institute of Physics Czech Academy of Sciences 16200 Prague Czech Republic
Kavli Institute for Nanoscience Discovery University of Oxford OX1 3QU Oxford UK
Nanomaterials and Nanotechnology Research Center CSIC UNIOVI PA 33940 El Entrego Spain
Zobrazit více v PubMed
Dwek, R. A. Glycobiology: toward understanding the function of sugars. Chem. Rev.96, 683–720 (1996). PubMed
Varki, A. Biological roles of glycans. Glycobiology27, 3–49 (2017). PubMed PMC
Gray, C. J. et al. Advancing solutions to the carbohydrate sequencing challenge. J. Am. Chem. Soc.141, 14463–14479 (2019). PubMed PMC
Ruhaak, L. R., Xu, G., Li, Q., Goonatilleke, E. & Lebrilla, C. B. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem. Rev.118, 7886–7930 (2018). PubMed PMC
Grabarics, M. et al. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev.122, 7840–7908 (2022). PubMed PMC
Ernst, B. & Magnani, J. L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov.8, 661 (2009). PubMed PMC
Hudak, JasonE. & Bertozzi, CarolynR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chem. Biol.21, 16–37 (2014). PubMed PMC
Smith, B. A. H. & Bertozzi, C. R. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov.20, 217–243 (2021). PubMed PMC
Seeberger, P. H. Discovery of semi- and fully-synthetic carbohydrate vaccines against bacterial infections using a medicinal chemistry approach. Chem. Rev.121, 3598–3626 (2021). PubMed PMC
Djalali, S., Yadav, N. & Delbianco, M. Towards glycan foldamers and programmable assemblies. Nat. Rev. Mater.9, 190–201 (2024).
Abb, S. et al. Carbohydrate self-assembly at surfaces: STM imaging of sucrose conformation and ordering on Cu(100). Angew. Chem. Int. Ed.58, 8336–8340 (2019). PubMed PMC
Wu, X. et al. Imaging single glycans. Nature582, 375–378 (2020). PubMed
Anggara, K. et al. Exploring the molecular conformation space by soft molecule–surface collision. J. Am. Chem. Soc.142, 21420–21427 (2020). PubMed PMC
Anggara, K. et al. Identifying the origin of local flexibility in a carbohydrate polymer. Proc. Natl Acad. Sci. USA118, e2102168118 (2021). PubMed PMC
Anggara, K. et al. Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science382, 219–223 (2023). PubMed PMC
Seibel, J. et al. Visualizing chiral interactions in carbohydrates adsorbed on Au(111) by high-resolution STM imaging. Angew. Chem. Int. Ed.62, e202305733 (2023). PubMed
Abb, S. et al. Polymorphism in carbohydrate self-assembly at surfaces: STM imaging and theoretical modelling of trehalose on Cu(100). RSC Adv.9, 35813–35819 (2019). PubMed PMC
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev.98, 1743–1754 (1998). PubMed
Gross, L. et al. Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem.2, 821–825 (2010). PubMed
Iwata, K. et al. Chemical structure imaging of a single molecule by atomic force microscopy at room temperature. Nat. Commun.6, 7766 (2015). PubMed PMC
Patera, L. L., Queck, F. & Repp, J. Imaging charge localization in a conjugated oligophenylene. Phys. Rev. Lett.125, 176803 (2020). PubMed
Xu, J. et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science371, 818–822 (2021). PubMed
de la Torre, B. et al. Submolecular resolution by variation of the inelastic electron tunneling spectroscopy amplitude and its relation to the AFM/STM signal. Phys. Rev. Lett.119, 166001 (2017). PubMed
Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B90, 085421 (2014).
Jelínek, P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys. Condens. Matter29, 343002 (2017). PubMed
Pavliček, N. & Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem.1, 0005 (2017).
Moll, N., Gross, L., Mohn, F., Curioni, A. & Meyer, G. A simple model of molecular imaging with noncontact atomic force microscopy. N. J. Phys.14, 083023 (2012).
Hapala, P., Temirov, R., Tautz, F. S. & Jelínek, P. Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett.113, 226101 (2014). PubMed
Hapala, P. et al. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nat. Commun.7, 11560 (2016). PubMed PMC
Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun.180, 2175–2196 (2009).
Stachowicz, A., Styrcz, A., Korchowiec, J., Modaressi, A. & Rogalski, M. DFT studies of cation binding by β-cyclodextrin. Theor. Chem. Acc.130, 939–953 (2011).
Rauschenbach, S. et al. Electrospray ion beam deposition: soft-landing and fragmentation of functional molecules at solid surfaces. ACS Nano3, 2901–2910 (2009). PubMed
Rauschenbach, S., Ternes, M., Harnau, L. & Kern, K. Mass spectrometry as a preparative tool for the surface science of large molecules. Annu. Rev. Anal. Chem.9, 473–498 (2016). PubMed
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.77, 3865–3868 (1996). PubMed
Satterley, C. J. et al. Electrospray deposition of fullerenes in ultra-high vacuum: in situ scanning tunneling microscopy and photoemission spectroscopy. Nanotechnology18, 455304 (2007).
Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum.90, 011101 (2019). PubMed
Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys.10, 181–188 (2012).
Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum.78, 013705 (2007). PubMed
Riss, A. SpmImage Tycoon: organize and analyze scanning probe microscopy data. J. Open Source Softw.7, 4644 (2022).
Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem.26, 1701–1718 (2005). PubMed
Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun.185, 604–613 (2014).
Kirschner, K. N. & Woods, R. J. Solvent interactions determine carbohydrate conformation. Proc. Natl Acad. Sci. USA98, 10541–10545 (2001). PubMed PMC
Basma, M., Sundara, S., Çalgan, D., Vernali, T. & Woods, R. J. Solvated ensemble averaging in the calculation of partial atomic charges. J. Comput. Chem.22, 1125–1137 (2001). PubMed PMC
Kirschner, K. N. & Woods, R. J. Quantum mechanical study of the nonbonded forces in water−methanol complexes. J. Phys. Chem. A105, 4150–4155 (2001). PubMed PMC
Cézard, C., Trivelli, X., Aubry, F., Djedaïni-Pilard, F. & Dupradeau, F.-Y. Molecular dynamics studies of native and substituted cyclodextrins in different media: 1. Charge derivation and force field performances. Phys. Chem. Chem. Phys.13, 15103–15121 (2011). PubMed
Iori, F., Di Felice, R., Molinari, E. & Corni, S. GolP: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J. Comput. Chem.30, 1465–1476 (2009). PubMed
Kührová, P. et al. Computer folding of RNA tetraloops: identification of key force field deficiencies. J. Chem. Theory Comput.12, 4534–4548 (2016). PubMed PMC
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem.18, 1463–1472 (1997).
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys.126, 014101 (2007). PubMed
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.81, 3684–3690 (1984).
Grabarics, M. et al. Atomically resolved imaging of the conformations and adsorption geometries of individual β-cyclodextrins with non-contact AFM. Zenodo10.5281/zenodo.13897824 (2024). PubMed