Atomically resolved imaging of the conformations and adsorption geometries of individual β-cyclodextrins with non-contact AFM

. 2024 Nov 02 ; 15 (1) : 9482. [epub] 20241102

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39488518

Grantová podpora
ID:90254 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.01.01/00/22_008/0004587 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 39488518
PubMed Central PMC11531514
DOI 10.1038/s41467-024-53555-0
PII: 10.1038/s41467-024-53555-0
Knihovny.cz E-zdroje

Glycans, consisting of covalently linked sugar units, are a major class of biopolymers essential to all known living organisms. To better understand their biological functions and further applications in fields from biomedicine to materials science, detailed knowledge of their structure is essential. However, due to the extraordinary complexity and conformational flexibility of glycans, state-of-the-art glycan analysis methods often fail to provide structural information with atomic precision. Here, we combine electrospray deposition in ultra-high vacuum with non-contact atomic force microscopy and theoretical calculations to unravel the structure of β-cyclodextrin, a cyclic glucose oligomer, with atomic-scale detail. Our results, established on the single-molecule level, reveal the different adsorption geometries and conformations of β-cyclodextrin. The position of individual hydroxy groups and the location of the stabilizing intramolecular H-bonds are deduced from atomically resolved images, enabling the unambiguous assignment of the molecular structure and demonstrating the potential of the method for glycan analysis.

Zobrazit více v PubMed

Dwek, R. A. Glycobiology: toward understanding the function of sugars. Chem. Rev.96, 683–720 (1996). PubMed

Varki, A. Biological roles of glycans. Glycobiology27, 3–49 (2017). PubMed PMC

Gray, C. J. et al. Advancing solutions to the carbohydrate sequencing challenge. J. Am. Chem. Soc.141, 14463–14479 (2019). PubMed PMC

Ruhaak, L. R., Xu, G., Li, Q., Goonatilleke, E. & Lebrilla, C. B. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem. Rev.118, 7886–7930 (2018). PubMed PMC

Grabarics, M. et al. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev.122, 7840–7908 (2022). PubMed PMC

Ernst, B. & Magnani, J. L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov.8, 661 (2009). PubMed PMC

Hudak, JasonE. & Bertozzi, CarolynR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chem. Biol.21, 16–37 (2014). PubMed PMC

Smith, B. A. H. & Bertozzi, C. R. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov.20, 217–243 (2021). PubMed PMC

Seeberger, P. H. Discovery of semi- and fully-synthetic carbohydrate vaccines against bacterial infections using a medicinal chemistry approach. Chem. Rev.121, 3598–3626 (2021). PubMed PMC

Djalali, S., Yadav, N. & Delbianco, M. Towards glycan foldamers and programmable assemblies. Nat. Rev. Mater.9, 190–201 (2024).

Abb, S. et al. Carbohydrate self-assembly at surfaces: STM imaging of sucrose conformation and ordering on Cu(100). Angew. Chem. Int. Ed.58, 8336–8340 (2019). PubMed PMC

Wu, X. et al. Imaging single glycans. Nature582, 375–378 (2020). PubMed

Anggara, K. et al. Exploring the molecular conformation space by soft molecule–surface collision. J. Am. Chem. Soc.142, 21420–21427 (2020). PubMed PMC

Anggara, K. et al. Identifying the origin of local flexibility in a carbohydrate polymer. Proc. Natl Acad. Sci. USA118, e2102168118 (2021). PubMed PMC

Anggara, K. et al. Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science382, 219–223 (2023). PubMed PMC

Seibel, J. et al. Visualizing chiral interactions in carbohydrates adsorbed on Au(111) by high-resolution STM imaging. Angew. Chem. Int. Ed.62, e202305733 (2023). PubMed

Abb, S. et al. Polymorphism in carbohydrate self-assembly at surfaces: STM imaging and theoretical modelling of trehalose on Cu(100). RSC Adv.9, 35813–35819 (2019). PubMed PMC

Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev.98, 1743–1754 (1998). PubMed

Gross, L. et al. Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem.2, 821–825 (2010). PubMed

Iwata, K. et al. Chemical structure imaging of a single molecule by atomic force microscopy at room temperature. Nat. Commun.6, 7766 (2015). PubMed PMC

Patera, L. L., Queck, F. & Repp, J. Imaging charge localization in a conjugated oligophenylene. Phys. Rev. Lett.125, 176803 (2020). PubMed

Xu, J. et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science371, 818–822 (2021). PubMed

de la Torre, B. et al. Submolecular resolution by variation of the inelastic electron tunneling spectroscopy amplitude and its relation to the AFM/STM signal. Phys. Rev. Lett.119, 166001 (2017). PubMed

Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B90, 085421 (2014).

Jelínek, P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys. Condens. Matter29, 343002 (2017). PubMed

Pavliček, N. & Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem.1, 0005 (2017).

Moll, N., Gross, L., Mohn, F., Curioni, A. & Meyer, G. A simple model of molecular imaging with noncontact atomic force microscopy. N. J. Phys.14, 083023 (2012).

Hapala, P., Temirov, R., Tautz, F. S. & Jelínek, P. Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett.113, 226101 (2014). PubMed

Hapala, P. et al. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nat. Commun.7, 11560 (2016). PubMed PMC

Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun.180, 2175–2196 (2009).

Stachowicz, A., Styrcz, A., Korchowiec, J., Modaressi, A. & Rogalski, M. DFT studies of cation binding by β-cyclodextrin. Theor. Chem. Acc.130, 939–953 (2011).

Rauschenbach, S. et al. Electrospray ion beam deposition: soft-landing and fragmentation of functional molecules at solid surfaces. ACS Nano3, 2901–2910 (2009). PubMed

Rauschenbach, S., Ternes, M., Harnau, L. & Kern, K. Mass spectrometry as a preparative tool for the surface science of large molecules. Annu. Rev. Anal. Chem.9, 473–498 (2016). PubMed

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.77, 3865–3868 (1996). PubMed

Satterley, C. J. et al. Electrospray deposition of fullerenes in ultra-high vacuum: in situ scanning tunneling microscopy and photoemission spectroscopy. Nanotechnology18, 455304 (2007).

Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum.90, 011101 (2019). PubMed

Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys.10, 181–188 (2012).

Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum.78, 013705 (2007). PubMed

Riss, A. SpmImage Tycoon: organize and analyze scanning probe microscopy data. J. Open Source Softw.7, 4644 (2022).

Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem.26, 1701–1718 (2005). PubMed

Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun.185, 604–613 (2014).

Kirschner, K. N. & Woods, R. J. Solvent interactions determine carbohydrate conformation. Proc. Natl Acad. Sci. USA98, 10541–10545 (2001). PubMed PMC

Basma, M., Sundara, S., Çalgan, D., Vernali, T. & Woods, R. J. Solvated ensemble averaging in the calculation of partial atomic charges. J. Comput. Chem.22, 1125–1137 (2001). PubMed PMC

Kirschner, K. N. & Woods, R. J. Quantum mechanical study of the nonbonded forces in water−methanol complexes. J. Phys. Chem. A105, 4150–4155 (2001). PubMed PMC

Cézard, C., Trivelli, X., Aubry, F., Djedaïni-Pilard, F. & Dupradeau, F.-Y. Molecular dynamics studies of native and substituted cyclodextrins in different media: 1. Charge derivation and force field performances. Phys. Chem. Chem. Phys.13, 15103–15121 (2011). PubMed

Iori, F., Di Felice, R., Molinari, E. & Corni, S. GolP: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J. Comput. Chem.30, 1465–1476 (2009). PubMed

Kührová, P. et al. Computer folding of RNA tetraloops: identification of key force field deficiencies. J. Chem. Theory Comput.12, 4534–4548 (2016). PubMed PMC

Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem.18, 1463–1472 (1997).

Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys.126, 014101 (2007). PubMed

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.81, 3684–3690 (1984).

Grabarics, M. et al. Atomically resolved imaging of the conformations and adsorption geometries of individual β-cyclodextrins with non-contact AFM. Zenodo10.5281/zenodo.13897824 (2024). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace