Electronegativity determination of individual surface atoms by atomic force microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28443645
PubMed Central
PMC5414035
DOI
10.1038/ncomms15155
PII: ncomms15155
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.
Zobrazit více v PubMed
Pauling L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54, 3570–3582 (1932).
Pauling L. in The Nature of the Chemical Bond 3rd, 13th Printing 1995 edn (Cornell University Press, 1960).
Mulliken R. S. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782–793 (1934).
Sanderson R. T. Electronegativities in inorganic chemistry. J. Chem. Educ. 29, 539–544 (1952).
Allred A. L. & Rochow E. G. A scale of electronegativity based on electrostatic force. J. Inorg. Nucl. Chem. 5, 264–268 (1958).
Gordy W. A new method of determining electronegativity from other atomic properties. Phys. Rev. 69, 604–607 (1946).
Parr R. G., Donnelly R. A., Levy M. & Palke W. E. Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978).
Wagman D. D. et al.. in The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units (American Chemical Society and American Institute of Physics, 1982). PubMed PMC
Giessibl F. J. Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy. Science 267, 68 (1995). PubMed
Barth C. & Reichling M. Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface. Nature 414, 54–57 (2001). PubMed
Lantz M. A. et al.. Quantitative measurement of short-range chemical bonding forces. Science 291, 2580–2583 (2001). PubMed
Sugimoto Y. et al.. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007). PubMed
Gross L., Mohn F., Moll N., Liljeroth P. & Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009). PubMed
Gross L. et al.. Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2, 821–825 (2010). PubMed
Mohn F., Gross L., Moll N. & Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012). PubMed
Iwata K. et al.. Chemical structure imaging of a single molecule by atomic force microscopy at room temperature. Nat. Commun. 6, 7766 (2015). PubMed PMC
Emmrich M. et al.. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science 348, 308–311 (2015). PubMed
Gross L. et al.. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012). PubMed
Pavliček N. et al.. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015). PubMed
de Oteyza D. G. et al.. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013). PubMed
Schuler B. et al.. Reversible bergman cyclization by atomic force microscopy. Nat. Chem. 8, 220–224 (2016). PubMed
Onoda J., Ondráček M., Yurtsever A., Jelínek P. & Sugimoto Y. Initial and secondary oxidation products on the Si(111)-(7 × 7) surface identified by atomic force microscopy and first principle calculations. Appl. Phys. Lett. 104, 133107 (2014).
Setvín M. et al.. Chemical identification of single atoms in heterogeneous III-IV chains on Si(100) surface by means of nc-AFM and DFT calculations. ACS Nano 6, 6969–6976 (2012). PubMed
Onoda J., Niki K. & Sugimoto Y. Identification of Si and Ge atoms by atomic force microscopy. Phys. Rev. B 92, 155309 (2015).
Pou P. et al.. Structure and stability of semiconductor tip apexes for atomic force microscopy. Nanotechnology 20, 264015 (2009). PubMed
Parr R. G. & Pearson R. G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983).
Sadewasser S. & Glatzel T. Kelvin Probe Force Microscopy (Springer-Verlag (2012).
Sadewasser S. et al.. New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors. Phys. Rev. Lett. 103, 266103 (2009). PubMed
Brommer K. D., Galván M., Pino A. D. Jr & Joannopoulos J. D. Theory of adsorption of atoms and molecules on Si(111)-(7 × 7). Surf. Sci. 314, 57–70 (1994).
Pearson R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).
Abe M. et al.. Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy. Appl. Phys. Lett. 90, 203103 (2007).
Abe M., Sugimoto Y., Custance O. & Morita S. Room-temperature reproducible spatial force spectroscopy using atom-tracking technique. Appl. Phys. Lett. 87, 173503 (2005).
Sader J. E. & Jarvis S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).
Kresse G. & Furthmüller J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). PubMed
Kresse G. & Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). PubMed
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). PubMed
Kresse G. & Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements. J. Phys.: Condens. Matter 6, 8245–8257 (1994).
Perdew J. P. et al.. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). PubMed