Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33876747

Grantová podpora
P50 MH082679 NIMH NIH HHS - United States
U54 MH118919 NIMH NIH HHS - United States
R03 MH105585 NIMH NIH HHS - United States
R01 MH056956 NIMH NIH HHS - United States
UL1 RR025758 NCRR NIH HHS - United States

Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.

Zobrazit více v PubMed

Barker D. J., Intrauterine programming of adult disease. Mol. Med. Today 1, 418–423 (1995). PubMed

McEwen B. S., Gonadal steroid influences on brain development and sexual differentiation. Int. Rev. Physiol. 27, 99–145 (1983). PubMed

Weinstock M., The long-term behavioural consequences of prenatal stress. Neurosci. Biobehav. Rev. 32, 1073–1086 (2008). PubMed

Bale T. L., Neuroendocrine and immune influences on the CNS: It’s a matter of sex. Neuron 64, 13–16 (2009). PubMed

Goldstein J. M., Impact of prenatal stress on offspring psychopathology and comorbidity with general medicine later in life. Biol. Psychiatry 85, 94–96 (2019). PubMed

Sandman C. A., Glynn L. M., Davis E. P., Is there a viability-vulnerability tradeoff? Sex differences in fetal programming. J. Psychosom. Res. 75, 327–335 (2013). PubMed PMC

Goldstein J. M., Hale T., Foster S. L., Tobet S. A., Handa R. J., Sex differences in major depression and comorbidity of cardiometabolic disorders: Impact of prenatal stress and immune exposures. Neuropsychopharmacology 44, 59–70 (2019). PubMed PMC

Gilman S. E., et al. ., Prenatal immune programming of the sex-dependent risk for major depression. Transl. Psychiatry 6, e822 (2016). PubMed PMC

Handa R. J., Weiser M. J., Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front. Neuroendocrinol. 35, 197–220 (2014). PubMed PMC

Goldstein J. M., et al. ., Sex-specific impact of maternal-fetal risk factors on depression and cardiovascular risk 40 years later. J. Dev. Orig. Health Dis. 2, 353–364 (2011). PubMed PMC

Tobet S., et al. ., Brain sex differences and hormone influences: A moving experience? J. Neuroendocrinol. 21, 387–392 (2009). PubMed PMC

Handa R. J., Burgess L. H., Kerr J. E., O’Keefe J. A., Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm. Behav. 28, 464–476 (1994). PubMed

Mandal M., et al. ., Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring. Brain Behav. Immun. 33, 33–45 (2013). PubMed

Williamson L. L., Sholar P. W., Mistry R. S., Smith S. H., Bilbo S. D., Microglia and memory: Modulation by early-life infection. J. Neurosci. 31, 15511–15521 (2011). PubMed PMC

Besedovsky H. O., et al. ., Cytokines as modulators of the hypothalamus-pituitary-adrenal axis. J. Steroid Biochem. Mol. Biol. 40, 613–618 (1991). PubMed

Zuloaga D. G., et al. ., Perinatal dexamethasone-induced alterations in apoptosis within the hippocampus and paraventricular nucleus of the hypothalamus are influenced by age and sex. J. Neurosci. Res. 90, 1403–1412 (2012). PubMed

Beijers R., Buitelaar J. K., de Weerth C., Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: Beyond the HPA axis. Eur. Child Adolesc. Psychiatry 23, 943–956 (2014). PubMed

DeRijk R., et al. ., Exercise and circadian rhythm-induced variations in plasma cortisol differentially regulate interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor-alpha (TNF alpha) production in humans: High sensitivity of TNF alpha and resistance of IL-6. J. Clin. Endocrinol. Metab. 82, 2182–2191 (1997). PubMed

Dozmorov M. G., et al. ., Associations between maternal cytokine levels during gestation and measures of child cognitive abilities and executive functioning. Brain Behav. Immun. 70, 390–397 (2018). PubMed PMC

Bangasser D. A., Shors T. J., Critical brain circuits at the intersection between stress and learning. Neurosci. Biobehav. Rev. 34, 1223–1233 (2010). PubMed PMC

Lin Y. L., Wang S., Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats. Behav. Brain Res. 259, 24–34 (2014). PubMed

Paintlia M. K., Paintlia A. S., Barbosa E., Singh I., Singh A. K., N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J. Neurosci. Res. 78, 347–361 (2004). PubMed

Kumral A., et al. ., Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain. Neonatology 92, 269–278 (2007). PubMed

Winter C., et al. ., Dopamine and serotonin levels following prenatal viral infection in mouse–implications for psychiatric disorders such as schizophrenia and autism. Eur. Neuropsychopharmacol. 18, 712–716 (2008). PubMed PMC

Ling Z., et al. ., Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp. Neurol. 199, 499–512 (2006). PubMed

Hanamsagar R., et al. ., Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 65, 1504–1520 (2017). PubMed PMC

Lenz K. M., McCarthy M. M., A starring role for microglia in brain sex differences. Neuroscientist 21, 306–321 (2015). PubMed PMC

Ghassabian A., et al. ., Gestational cytokine concentrations and neurocognitive development at 7 years. Transl. Psychiatry 8, 64 (2018). PubMed PMC

Goldstein J. M., et al. ., Prenatal maternal immune disruption and sex-dependent risk for psychoses. Psychol. Med. 44, 3249–3261 (2014). PubMed PMC

Davis E. P., Pfaff D., Sexually dimorphic responses to early adversity: Implications for affective problems and autism spectrum disorder. Psychoneuroendocrinology 49, 11–25 (2014). PubMed PMC

Arisi G. M., Nervous and immune systems signals and connections: Cytokines in hippocampus physiology and pathology. Epilepsy Behav. 38, 43–47 (2014). PubMed

Harbuz M. S., Stephanou A., Sarlis N., Lightman S. L., The effects of recombinant human interleukin (IL)-1 alpha, IL-1 beta or IL-6 on hypothalamo-pituitary-adrenal axis activation. J. Endocrinol. 133, 349–355 (1992). PubMed

Mareckova K., et al. ., Brain activity and connectivity in response to negative affective stimuli: Impact of dysphoric mood and sex across diagnoses. Hum. Brain Mapp. 37, 3733–3744 (2016). PubMed PMC

Mareckova K., et al. ., Neural - hormonal responses to negative affective stimuli: Impact of dysphoric mood and sex. J. Affect. Disord. 222, 88–97 (2017). PubMed PMC

Goldstein J. M., Jerram M., Abbs B., Whitfield-Gabrieli S., Makris N., Sex differences in stress response circuitry activation dependent on female hormonal cycle. J. Neurosci. 30, 431–438 (2010). PubMed PMC

Goldstein J. M., et al. ., Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J. Neurosci. 25, 9309–9316 (2005). PubMed PMC

Lang P. J., et al. ., Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology 35, 199–210 (1998). PubMed

Bradley M. M., Codispoti M., Cuthbert B. N., Lang P. J., Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion 1, 276–298 (2001). PubMed

Bradley M. M., Codispoti M., Sabatinelli D., Lang P. J., Emotion and motivation II: Sex differences in picture processing. Emotion 1, 300–319 (2001). PubMed

Bradley M. M., Cuthbert B. N., Lang P. J., Picture media and emotion: Effects of a sustained affective context. Psychophysiology 33, 662–670 (1996). PubMed

Briceño E. M., et al. ., Age and gender modulate the neural circuitry supporting facial emotion processing in adults with major depressive disorder. Am. J. Geriatr. Psychiatry 23, 304–313 (2015). PubMed PMC

McManis M. H., Bradley M. M., Berg W. K., Cuthbert B. N., Lang P. J., Emotional reactions in children: Verbal, physiological, and behavioral responses to affective pictures. Psychophysiology 38, 222–231 (2001). PubMed

Pavur R., Nath R., Exact F tests in an ANOVA procedure for dependent observations. Multivariate Behav. Res. 19, 408–420 (1984). PubMed

McCormick C. M., Smythe J. W., Sharma S., Meaney M. J., Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Brain Res. Dev. Brain Res. 84, 55–61 (1995). PubMed

Holsen L. M., et al. ., Stress response circuitry hypoactivation related to hormonal dysfunction in women with major depression. J. Affect. Disord. 131, 379–387 (2011). PubMed PMC

Giovanoli S., et al. ., Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging. J. Neuroinflammation 12, 221 (2015). PubMed PMC

Hui C. W., et al. ., Prenatal immune challenge in mice leads to partly sex-dependent behavioral, microglial, and molecular abnormalities associated with schizophrenia. Front. Mol. Neurosci. 11, 13 (2018). PubMed PMC

Correale J., Arias M., Gilmore W., Steroid hormone regulation of cytokine secretion by proteolipid protein-specific CD4+ T cell clones isolated from multiple sclerosis patients and normal control subjects. J. Immunol. 161, 3365–3374 (1998). PubMed

Shelton M. M., Schminkey D. L., Groer M. W., Relationships among prenatal depression, plasma cortisol, and inflammatory cytokines. Biol. Res. Nurs. 17, 295–302 (2015). PubMed PMC

Frahm K. A., Schow M. J., Tobet S. A., The vasculature within the paraventricular nucleus of the hypothalamus in mice varies as a function of development, subnuclear location, and GABA signaling. Horm. Metab. Res. 44, 619–624 (2012). PubMed

Frahm K. A., Tobet S. A., Development of the blood-brain barrier within the paraventricular nucleus of the hypothalamus: Influence of fetal glucocorticoid excess. Brain Struct. Funct. 220, 2225–2234 (2015). PubMed PMC

Bolton J. L., Short A. K., Simeone K. A., Daglian J., Baram T. Z., Programming of stress-sensitive neurons and circuits by early-life experiences. Front. Behav. Neurosci. 13, 30 (2019). PubMed PMC

Brunson K. L., et al. ., Mechanisms of late-onset cognitive decline after early-life stress. J. Neurosci. 25, 9328–9338 (2005). PubMed PMC

McCarthy M. M., Sex differences in neuroimmunity as an inherent risk factor. Neuropsychopharmacology 44, 38–44 (2019). PubMed PMC

Lenz K. M., et al. ., Mast cells in the developing brain determine adult sexual behavior. J. Neurosci. 38, 8044–8059 (2018). PubMed PMC

Joshi A., et al. ., Sex differences in the effects of early life stress exposure on mast cells in the developing rat brain. Horm. Behav. 113, 76–84 (2019). PubMed

Frahm K. A., Handa R. J., Tobet S. A., Embryonic exposure to dexamethasone affects nonneuronal cells in the adult paraventricular nucleus of the hypothalamus. J. Endocr. Soc. 2, 140–153 (2017). PubMed PMC

Bronson S. L., Bale T. L., Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology 155, 2635–2646 (2014). PubMed PMC

Mueller B. R., Bale T. L., Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065 (2008). PubMed PMC

Mueller B. R., Bale T. L., Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiol. Behav. 91, 55–65 (2007). PubMed

Lenz K. M., Pickett L. A., Wright C. L., Galan A., McCarthy M. M., Prenatal allergen exposure perturbs sexual differentiation and programs lifelong changes in adult social and sexual behavior. Sci. Rep. 9, 4837 (2019). PubMed PMC

Niswander K. R., Gordon M., National Institute of Neurological Diseases and Stroke , The Women and Their Pregnancies; The Collaborative Perinatal Study of the National Institute of Neurological Diseases and Stroke (W.B. Saunders Company, Philadelphia, PA, 1972), pp. 540.

Chin-Lun Hung G., et al. ., Socioeconomic disadvantage and neural development from infancy through early childhood. Int. J. Epidemiol. 44, 1889–1899 (2015). PubMed PMC

Jacobs E. G., et al. ., 17β-estradiol differentially regulates stress circuitry activity in healthy and depressed women. Neuropsychopharmacology 40, 566–576 (2015). PubMed PMC

Holsen L. M., et al. ., HPA-axis hormone modulation of stress response circuitry activity in women with remitted major depression. Neuroscience 250, 733–742 (2013). PubMed PMC

Stroud L. R., et al. ., Long-term stability of maternal prenatal steroid hormones from the national collaborative perinatal Project: Still valid after all these years. Psychoneuroendocrinology 32, 140–150 (2007). PubMed PMC

Gilman S. E., et al. ., Socioeconomic disadvantage, gestational immune activity, and neurodevelopment in early childhood. Proc. Natl. Acad. Sci. U.S.A. 114, 6728–6733 (2017). PubMed PMC

Vignali D. A., Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 243, 243–255 (2000). PubMed

Martins T. B., Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile. Clin. Diagn. Lab. Immunol. 9, 41–45 (2002). PubMed PMC

Begum G., et al. ., Maternal undernutrition programs tissue-specific epigenetic changes in the glucocorticoid receptor in adult offspring. Endocrinology 154, 4560–4569 (2013). PubMed

Hirshfeld D. R., et al. ., Stable behavioral inhibition and its association with anxiety disorder. J. Am. Acad. Child Adolesc. Psychiatry 31, 103–111 (1992). PubMed

Duff E. P., Cunnington R., Egan G. F., REX: Response exploration for neuroimaging datasets. Neuroinformatics 5, 223–234 (2007). PubMed

McLaren D. G., Ries M. L., Xu G., Johnson S. C., A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. Neuroimage 61, 1277–1286 (2012). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...