Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P50 MH082679
NIMH NIH HHS - United States
U54 MH118919
NIMH NIH HHS - United States
R03 MH105585
NIMH NIH HHS - United States
R01 MH056956
NIMH NIH HHS - United States
UL1 RR025758
NCRR NIH HHS - United States
PubMed
33876747
PubMed Central
PMC8054010
DOI
10.1073/pnas.2014464118
PII: 2014464118
Knihovny.cz E-zdroje
- Klíčová slova
- functional brain imaging, prenatal immune programming, prenatal stress, sex, stress circuitry,
- MeSH
- cytokiny krev MeSH
- dospělí MeSH
- hypothalamus diagnostické zobrazování MeSH
- konektom * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- psychický stres diagnostické zobrazování MeSH
- sexuální faktory MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice diagnostické zobrazování MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cytokiny MeSH
Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.
Central European Institute of Technology Masaryk University 601 77 Brno Czech Republic
Department of Epidemiology and Population Health Brown University Providence RI02912
Department of Epidemiology Columbia University Mailman School of Public Health New York NY 10032
Department of Obstetrics and Gynecology Massachusetts General Hospital Boston MA 02114
Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston MA 02114
Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston MA 02114;
Zobrazit více v PubMed
Barker D. J., Intrauterine programming of adult disease. Mol. Med. Today 1, 418–423 (1995). PubMed
McEwen B. S., Gonadal steroid influences on brain development and sexual differentiation. Int. Rev. Physiol. 27, 99–145 (1983). PubMed
Weinstock M., The long-term behavioural consequences of prenatal stress. Neurosci. Biobehav. Rev. 32, 1073–1086 (2008). PubMed
Bale T. L., Neuroendocrine and immune influences on the CNS: It’s a matter of sex. Neuron 64, 13–16 (2009). PubMed
Goldstein J. M., Impact of prenatal stress on offspring psychopathology and comorbidity with general medicine later in life. Biol. Psychiatry 85, 94–96 (2019). PubMed
Sandman C. A., Glynn L. M., Davis E. P., Is there a viability-vulnerability tradeoff? Sex differences in fetal programming. J. Psychosom. Res. 75, 327–335 (2013). PubMed PMC
Goldstein J. M., Hale T., Foster S. L., Tobet S. A., Handa R. J., Sex differences in major depression and comorbidity of cardiometabolic disorders: Impact of prenatal stress and immune exposures. Neuropsychopharmacology 44, 59–70 (2019). PubMed PMC
Gilman S. E., et al. ., Prenatal immune programming of the sex-dependent risk for major depression. Transl. Psychiatry 6, e822 (2016). PubMed PMC
Handa R. J., Weiser M. J., Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front. Neuroendocrinol. 35, 197–220 (2014). PubMed PMC
Goldstein J. M., et al. ., Sex-specific impact of maternal-fetal risk factors on depression and cardiovascular risk 40 years later. J. Dev. Orig. Health Dis. 2, 353–364 (2011). PubMed PMC
Tobet S., et al. ., Brain sex differences and hormone influences: A moving experience? J. Neuroendocrinol. 21, 387–392 (2009). PubMed PMC
Handa R. J., Burgess L. H., Kerr J. E., O’Keefe J. A., Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm. Behav. 28, 464–476 (1994). PubMed
Mandal M., et al. ., Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring. Brain Behav. Immun. 33, 33–45 (2013). PubMed
Williamson L. L., Sholar P. W., Mistry R. S., Smith S. H., Bilbo S. D., Microglia and memory: Modulation by early-life infection. J. Neurosci. 31, 15511–15521 (2011). PubMed PMC
Besedovsky H. O., et al. ., Cytokines as modulators of the hypothalamus-pituitary-adrenal axis. J. Steroid Biochem. Mol. Biol. 40, 613–618 (1991). PubMed
Zuloaga D. G., et al. ., Perinatal dexamethasone-induced alterations in apoptosis within the hippocampus and paraventricular nucleus of the hypothalamus are influenced by age and sex. J. Neurosci. Res. 90, 1403–1412 (2012). PubMed
Beijers R., Buitelaar J. K., de Weerth C., Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: Beyond the HPA axis. Eur. Child Adolesc. Psychiatry 23, 943–956 (2014). PubMed
DeRijk R., et al. ., Exercise and circadian rhythm-induced variations in plasma cortisol differentially regulate interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor-alpha (TNF alpha) production in humans: High sensitivity of TNF alpha and resistance of IL-6. J. Clin. Endocrinol. Metab. 82, 2182–2191 (1997). PubMed
Dozmorov M. G., et al. ., Associations between maternal cytokine levels during gestation and measures of child cognitive abilities and executive functioning. Brain Behav. Immun. 70, 390–397 (2018). PubMed PMC
Bangasser D. A., Shors T. J., Critical brain circuits at the intersection between stress and learning. Neurosci. Biobehav. Rev. 34, 1223–1233 (2010). PubMed PMC
Lin Y. L., Wang S., Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats. Behav. Brain Res. 259, 24–34 (2014). PubMed
Paintlia M. K., Paintlia A. S., Barbosa E., Singh I., Singh A. K., N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J. Neurosci. Res. 78, 347–361 (2004). PubMed
Kumral A., et al. ., Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain. Neonatology 92, 269–278 (2007). PubMed
Winter C., et al. ., Dopamine and serotonin levels following prenatal viral infection in mouse–implications for psychiatric disorders such as schizophrenia and autism. Eur. Neuropsychopharmacol. 18, 712–716 (2008). PubMed PMC
Ling Z., et al. ., Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp. Neurol. 199, 499–512 (2006). PubMed
Hanamsagar R., et al. ., Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 65, 1504–1520 (2017). PubMed PMC
Lenz K. M., McCarthy M. M., A starring role for microglia in brain sex differences. Neuroscientist 21, 306–321 (2015). PubMed PMC
Ghassabian A., et al. ., Gestational cytokine concentrations and neurocognitive development at 7 years. Transl. Psychiatry 8, 64 (2018). PubMed PMC
Goldstein J. M., et al. ., Prenatal maternal immune disruption and sex-dependent risk for psychoses. Psychol. Med. 44, 3249–3261 (2014). PubMed PMC
Davis E. P., Pfaff D., Sexually dimorphic responses to early adversity: Implications for affective problems and autism spectrum disorder. Psychoneuroendocrinology 49, 11–25 (2014). PubMed PMC
Arisi G. M., Nervous and immune systems signals and connections: Cytokines in hippocampus physiology and pathology. Epilepsy Behav. 38, 43–47 (2014). PubMed
Harbuz M. S., Stephanou A., Sarlis N., Lightman S. L., The effects of recombinant human interleukin (IL)-1 alpha, IL-1 beta or IL-6 on hypothalamo-pituitary-adrenal axis activation. J. Endocrinol. 133, 349–355 (1992). PubMed
Mareckova K., et al. ., Brain activity and connectivity in response to negative affective stimuli: Impact of dysphoric mood and sex across diagnoses. Hum. Brain Mapp. 37, 3733–3744 (2016). PubMed PMC
Mareckova K., et al. ., Neural - hormonal responses to negative affective stimuli: Impact of dysphoric mood and sex. J. Affect. Disord. 222, 88–97 (2017). PubMed PMC
Goldstein J. M., Jerram M., Abbs B., Whitfield-Gabrieli S., Makris N., Sex differences in stress response circuitry activation dependent on female hormonal cycle. J. Neurosci. 30, 431–438 (2010). PubMed PMC
Goldstein J. M., et al. ., Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J. Neurosci. 25, 9309–9316 (2005). PubMed PMC
Lang P. J., et al. ., Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology 35, 199–210 (1998). PubMed
Bradley M. M., Codispoti M., Cuthbert B. N., Lang P. J., Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion 1, 276–298 (2001). PubMed
Bradley M. M., Codispoti M., Sabatinelli D., Lang P. J., Emotion and motivation II: Sex differences in picture processing. Emotion 1, 300–319 (2001). PubMed
Bradley M. M., Cuthbert B. N., Lang P. J., Picture media and emotion: Effects of a sustained affective context. Psychophysiology 33, 662–670 (1996). PubMed
Briceño E. M., et al. ., Age and gender modulate the neural circuitry supporting facial emotion processing in adults with major depressive disorder. Am. J. Geriatr. Psychiatry 23, 304–313 (2015). PubMed PMC
McManis M. H., Bradley M. M., Berg W. K., Cuthbert B. N., Lang P. J., Emotional reactions in children: Verbal, physiological, and behavioral responses to affective pictures. Psychophysiology 38, 222–231 (2001). PubMed
Pavur R., Nath R., Exact F tests in an ANOVA procedure for dependent observations. Multivariate Behav. Res. 19, 408–420 (1984). PubMed
McCormick C. M., Smythe J. W., Sharma S., Meaney M. J., Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Brain Res. Dev. Brain Res. 84, 55–61 (1995). PubMed
Holsen L. M., et al. ., Stress response circuitry hypoactivation related to hormonal dysfunction in women with major depression. J. Affect. Disord. 131, 379–387 (2011). PubMed PMC
Giovanoli S., et al. ., Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging. J. Neuroinflammation 12, 221 (2015). PubMed PMC
Hui C. W., et al. ., Prenatal immune challenge in mice leads to partly sex-dependent behavioral, microglial, and molecular abnormalities associated with schizophrenia. Front. Mol. Neurosci. 11, 13 (2018). PubMed PMC
Correale J., Arias M., Gilmore W., Steroid hormone regulation of cytokine secretion by proteolipid protein-specific CD4+ T cell clones isolated from multiple sclerosis patients and normal control subjects. J. Immunol. 161, 3365–3374 (1998). PubMed
Shelton M. M., Schminkey D. L., Groer M. W., Relationships among prenatal depression, plasma cortisol, and inflammatory cytokines. Biol. Res. Nurs. 17, 295–302 (2015). PubMed PMC
Frahm K. A., Schow M. J., Tobet S. A., The vasculature within the paraventricular nucleus of the hypothalamus in mice varies as a function of development, subnuclear location, and GABA signaling. Horm. Metab. Res. 44, 619–624 (2012). PubMed
Frahm K. A., Tobet S. A., Development of the blood-brain barrier within the paraventricular nucleus of the hypothalamus: Influence of fetal glucocorticoid excess. Brain Struct. Funct. 220, 2225–2234 (2015). PubMed PMC
Bolton J. L., Short A. K., Simeone K. A., Daglian J., Baram T. Z., Programming of stress-sensitive neurons and circuits by early-life experiences. Front. Behav. Neurosci. 13, 30 (2019). PubMed PMC
Brunson K. L., et al. ., Mechanisms of late-onset cognitive decline after early-life stress. J. Neurosci. 25, 9328–9338 (2005). PubMed PMC
McCarthy M. M., Sex differences in neuroimmunity as an inherent risk factor. Neuropsychopharmacology 44, 38–44 (2019). PubMed PMC
Lenz K. M., et al. ., Mast cells in the developing brain determine adult sexual behavior. J. Neurosci. 38, 8044–8059 (2018). PubMed PMC
Joshi A., et al. ., Sex differences in the effects of early life stress exposure on mast cells in the developing rat brain. Horm. Behav. 113, 76–84 (2019). PubMed
Frahm K. A., Handa R. J., Tobet S. A., Embryonic exposure to dexamethasone affects nonneuronal cells in the adult paraventricular nucleus of the hypothalamus. J. Endocr. Soc. 2, 140–153 (2017). PubMed PMC
Bronson S. L., Bale T. L., Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology 155, 2635–2646 (2014). PubMed PMC
Mueller B. R., Bale T. L., Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065 (2008). PubMed PMC
Mueller B. R., Bale T. L., Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiol. Behav. 91, 55–65 (2007). PubMed
Lenz K. M., Pickett L. A., Wright C. L., Galan A., McCarthy M. M., Prenatal allergen exposure perturbs sexual differentiation and programs lifelong changes in adult social and sexual behavior. Sci. Rep. 9, 4837 (2019). PubMed PMC
Niswander K. R., Gordon M., National Institute of Neurological Diseases and Stroke , The Women and Their Pregnancies; The Collaborative Perinatal Study of the National Institute of Neurological Diseases and Stroke (W.B. Saunders Company, Philadelphia, PA, 1972), pp. 540.
Chin-Lun Hung G., et al. ., Socioeconomic disadvantage and neural development from infancy through early childhood. Int. J. Epidemiol. 44, 1889–1899 (2015). PubMed PMC
Jacobs E. G., et al. ., 17β-estradiol differentially regulates stress circuitry activity in healthy and depressed women. Neuropsychopharmacology 40, 566–576 (2015). PubMed PMC
Holsen L. M., et al. ., HPA-axis hormone modulation of stress response circuitry activity in women with remitted major depression. Neuroscience 250, 733–742 (2013). PubMed PMC
Stroud L. R., et al. ., Long-term stability of maternal prenatal steroid hormones from the national collaborative perinatal Project: Still valid after all these years. Psychoneuroendocrinology 32, 140–150 (2007). PubMed PMC
Gilman S. E., et al. ., Socioeconomic disadvantage, gestational immune activity, and neurodevelopment in early childhood. Proc. Natl. Acad. Sci. U.S.A. 114, 6728–6733 (2017). PubMed PMC
Vignali D. A., Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 243, 243–255 (2000). PubMed
Martins T. B., Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile. Clin. Diagn. Lab. Immunol. 9, 41–45 (2002). PubMed PMC
Begum G., et al. ., Maternal undernutrition programs tissue-specific epigenetic changes in the glucocorticoid receptor in adult offspring. Endocrinology 154, 4560–4569 (2013). PubMed
Hirshfeld D. R., et al. ., Stable behavioral inhibition and its association with anxiety disorder. J. Am. Acad. Child Adolesc. Psychiatry 31, 103–111 (1992). PubMed
Duff E. P., Cunnington R., Egan G. F., REX: Response exploration for neuroimaging datasets. Neuroinformatics 5, 223–234 (2007). PubMed
McLaren D. G., Ries M. L., Xu G., Johnson S. C., A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. Neuroimage 61, 1277–1286 (2012). PubMed PMC