Photosynthesis in dynamic light: systems biology of unconventional chlorophyll fluorescence transients in Synechocystis sp. PCC 6803
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- časové faktory MeSH
- chlorofyl chemie metabolismus MeSH
- fluorescence MeSH
- fotosyntéza fyziologie účinky záření MeSH
- fotosystém I - proteinový komplex metabolismus MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- nelineární dynamika MeSH
- přenos energie MeSH
- světlo * MeSH
- Synechocystis metabolismus účinky záření MeSH
- systémová biologie * MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- fotosystém I - proteinový komplex MeSH
- fotosystém II - proteinový komplex MeSH
Photosynthetic organisms live in a dynamic environment where light typically fluctuates around a mean level that is slowly drifting during the solar day. We show that the far-from-equilibrium photosynthesis occurring in a rapidly fluctuating light differs vastly from the stationary-flux photosynthesis attained in a constant or slowly drifting light. Photosynthetic organisms in a static or slowly drifting light can be characterized by a steady-state quantum yield of chlorophyll fluorescence emission F' that is changing linearly with small and slow variations of the incident irradiance I+DeltaI(t): F'(I+DeltaI(t)) approximately Fmean '(dF)/(dI).DeltaI(t). In Synechocystis sp. PCC 6803, the linear approximation holds for an extended interval covering largely the static irradiance range experienced by the cyanobacteria in nature. The photosynthetic dynamism and, consequently, the dynamism of the chlorophyll fluorescence emission change dramatically when exposing the organism to a fluctuating irradiance. Harmonically-modulated irradiance I+DeltaI . sin(2pit/T), T approximately 1-25 s induces perpetual, far-from-equilibrium forced oscillations that are strongly non-linear, exhibiting significant hysteresis with multiple fluorescence levels corresponding to a single instantaneous level of the incident irradiance. We propose that, in nature, the far-from-equilibrium dynamic phenomena represent a significant correction to the steady-state photosynthetic activity that is typically investigated in laboratory. Analysis of the forced oscillations by the tools of systems biology suggests that the dynamism of photosynthesis observed in fluctuating light can be explained by a delayed action of regulatory agents.
Zobrazit více v PubMed
Photosynth Res. 1992 Dec;34(3):375-85 PubMed
Biochim Biophys Acta. 2003 Oct 17;1607(1):5-17 PubMed
Science. 2002 Jul 5;297(5578):91-3 PubMed
Plant Physiol. 2002 Nov;130(3):1201-12 PubMed
Bacteriol Rev. 1971 Jun;35(2):171-205 PubMed
Mol Microbiol. 2001 Sep;41(5):965-71 PubMed
Photosynth Res. 1990 Sep;25(3):173-85 PubMed
Biophys J. 2002 Oct;83(4):2180-9 PubMed
From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement
Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light
Photosynthesis dynamics and regulation sensed in the frequency domain