E-photosynthesis: a comprehensive modeling approach to understand chlorophyll fluorescence transients and other complex dynamic features of photosynthesis in fluctuating light
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- biologické modely * MeSH
- chlorofyl metabolismus MeSH
- fluorescence MeSH
- fotosyntéza účinky záření MeSH
- světlo * MeSH
- systémová biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chlorofyl MeSH
Plants are exposed to a temporally and spatially heterogeneous environment, and photosynthesis is well adapted to these fluctuations. Understanding of the complex, non-linear dynamics of photosynthesis in fluctuating light requires novel-modeling approaches that involve not only the primary light and dark biochemical reactions, but also networks of regulatory interactions. This requirement exceeds the capacity of the existing molecular models that are typically reduced to describe a partial process, dynamics of a specific complex or its particular dynamic feature. We propose a concept of comprehensive model that would represent an internally consistent, integral framework combining information on the reduced models that led to its construction. This review explores approaches and tools that exist in engineering, mathematics, and in other domains of biology that can be used to develop a comprehensive model of photosynthesis. Equally important, we investigated techniques by which one can rigorously reduce such a comprehensive model to models of low dimensionality, which preserve dynamic features of interest and, thus, contribute to a better understanding of photosynthesis under natural and thus fluctuating conditions. The web-based platform www.e-photosynthesis.org is introduced as an arena where these concepts and tools are being introduced and tested.
Zobrazit více v PubMed
Chem Rev. 1998 Apr 2;98(2):391-408 PubMed
Funct Plant Biol. 2006 Feb;33(1):9-30 PubMed
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11801-5 PubMed
Biophys J. 2006 Jan 15;90(2):552-65 PubMed
Science. 2002 Mar 1;295(5560):1664-9 PubMed
Planta. 1992 Aug;188(1):28-38 PubMed
Plant Methods. 2006 Jan 09;2:1 PubMed
Biochim Biophys Acta. 1999 May 26;1412(1):1-28 PubMed
Syst Biol (Stevenage). 2004 Jun;1(1):149-58 PubMed
Photosynth Res. 1990 Sep;25(3):151-60 PubMed
Curr Opin Plant Biol. 2006 Dec;9(6):671-8 PubMed
Biochim Biophys Acta. 2003 Oct 17;1607(1):5-17 PubMed
Science. 2002 Mar 1;295(5560):1662-4 PubMed
Science. 2002 Jul 5;297(5578):91-3 PubMed
Biophys J. 2005 Sep;89(3):1464-81 PubMed
Plant Physiol. 2001 Jan;125(1):42-5 PubMed
Plant Physiol. 1997 Apr;113(4):1309-1317 PubMed
Photosynth Res. 2003;76(1-3):329-41 PubMed
Biophys J. 1995 Jun;68(6):2474-92 PubMed
FEBS J. 2006 Nov;273(21):4862-77 PubMed
Plant Physiol. 2003 Jun;132(2):404-9 PubMed
Mol Syst Biol. 2006;2:2006.0010 PubMed
Photosynth Res. 2005 Jun;84(1-3):99-106 PubMed
Phys Chem Chem Phys. 2006 Feb 21;8(7):793-807 PubMed
Photosynth Res. 2002 Apr;72(1):95-106 PubMed
Biophys J. 2003 Dec;85(6):3899-922 PubMed
Photosynth Res. 1986 Jan;10(1-2):51-62 PubMed
Biochim Biophys Acta. 1999 Jan 5;1409(3):125-42 PubMed
Appl Opt. 2006 Jul 1;45(19):4726-39 PubMed
J Exp Bot. 2004 May;55(400):1177-86 PubMed
J Exp Bot. 2000 Feb;51 Spec No:319-28 PubMed
Proc Natl Acad Sci U S A. 2006 May 2;103(18):6895-900 PubMed
Proc Biol Sci. 2001 Jun 22;268(1473):1307-13 PubMed
FEBS J. 2005 Aug;272(16):4034-43 PubMed
Bioinformatics. 2003 Mar 1;19(4):524-31 PubMed