Nontuberculous Mycobacteria: Ecology and Impact on Animal and Human Health
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu úvodníky
Grantová podpora
21-12719S
Czech Science Foundation
NU20-09-00114
Czech Health Research Council
PubMed
35893574
PubMed Central
PMC9332762
DOI
10.3390/microorganisms10081516
PII: microorganisms10081516
Knihovny.cz E-zdroje
- Klíčová slova
- aerosolization, biofilm formation, environmental saprophytic mycobacteria, estuarine, geophagia, hydrophobic, natural and human-engineered water systems, potentially pathogenic mycobacteria, saprophytic mycobacteria, saprozoic mycobacteria, surface microlayer,
- Publikační typ
- úvodníky MeSH
Nontuberculous mycobacteria (NTM) represent an important group of environmentally saprophytic and potentially pathogenic bacteria that can cause serious mycobacterioses in humans and animals. The sources of infections often remain undetected except for soil- or water-borne, water-washed, water-based, or water-related infections caused by groups of the Mycobacterium (M.) avium complex; M. fortuitum; and other NTM species, including M. marinum infection, known as fish tank granuloma, and M. ulcerans infection, which is described as a Buruli ulcer. NTM could be considered as water-borne, air-borne, and soil-borne pathogens (sapronoses). A lot of clinically relevant NTM species could be considered due to the enormity of published data on permanent, periodic, transient, and incidental sapronoses. Interest is currently increasing in mycobacterioses diagnosed in humans and husbandry animals (esp. pigs) caused by NTM species present in peat bogs, potting soil, garden peat, bat and bird guano, and other matrices used as garden fertilizers. NTM are present in dust particles and in water aerosols, which represent certain factors during aerogenous infection in immunosuppressed host organisms during hospitalization, speleotherapy, and leisure activities. For this Special Issue, a collection of articles providing a current view of the research on NTM-including the clinical relevance, therapy, prevention of mycobacterioses, epidemiology, and ecology-are addressed.
Department of Biological Sciences Virginia Tech Blacksburg VA 24061 USA
Public Health Institute Ostrava Partyzanske Nam 7 702 00 Ostrava Czech Republic
Zobrazit více v PubMed
Kazda J. The Ecology of Mycobacteria. Kluwer Academic Publishers; Dordrecht, Germany: Boston, MA, USA: London, UK: 2000. 72p
Kazda J., Pavlik I., Falkinham J., Hruska K. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Heidelberg, Germany: London, UK: New York, NY, USA: 2009. 520p
Falkinham J.O., III. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg. Infect. Dis. 2011;17:419–424. doi: 10.3201/eid1703.101510. PubMed DOI PMC
Hatzenbuehler L.A., Tobin-D’Angelo M., Drenzek C., Peralta G., Cranmer L.C., Anderson E.J., Milla S.S., Abramowicz S., Yi J., Hilinski J., et al. Pediatric dental clinic-associated outbreak of Mycobacterium abscessus infection. J. Pediatric. Infect. Dis. Soc. 2017;6:e116–e122. doi: 10.1093/jpids/pix065. PubMed DOI
Tichenor W.S., Thurlow J., McNulty S., Brown-Elliott B.A., Wallace R.J., Jr., Falkinham J.O., III. Nontuberculous mycobacteria in household plumbing as possible cause of chronic rhinosinusitis. Emerg Infect Dis. 2012;18:1612–1617. doi: 10.3201/eid1810.120164. PubMed DOI PMC
Mullis S., Falkinham J.O., III. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J. Appl. Microbiol. 2013;115:908–914. doi: 10.1111/jam.12272. PubMed DOI
Falkinham J.O., III. Environmental sources of nontuberculous mycobacteria. Clin. Chest Med. 2015;36:35–41. doi: 10.1016/j.ccm.2014.10.003. PubMed DOI
Lewis A.H., Falkinham J.O., III. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int. J. Mycobacteriol. 2015;4:25–30. doi: 10.1016/j.ijmyco.2014.11.066. PubMed DOI
Iakhiaeva E., Howard S.T., Brown Elliott B.A., McNulty S., Newman K.L., Falkinham J.O., III, Williams M., Kwait R., Lande L., Vasireddy R., et al. Variable-Number Tandem-Repeat analysis of respiratory and household water biofilm isolates of “Mycobacterium avium subsp. Hominissuis” with establishment of a PCR database. J. Clin. Microbiol. 2016;54:891–901. doi: 10.1128/JCM.02409-15. PubMed DOI PMC
Falkinham J.O., III. Challenges of NTM drug development. Front. Microbiol. 2018;9:1613. doi: 10.3389/fmicb.2018.01613. PubMed DOI PMC
Lande L., Alexander D.C., Wallace R.J., Jr., Kwait R., Iakhiaeva E., Williams M., Cameron A.D.S., Olshefsky S., Devon R., Vasireddy R., et al. Mycobacterium avium in community and household water, suburban Philadelphia, Pennsylvania, USA, 2010–2012. Emerg. Infect. Dis. 2019;25:473–481. doi: 10.3201/eid2503.180336. PubMed DOI PMC
Guenette S., Williams M.D., Falkinham J.O., III. Growth temperature, trehalose, and susceptibility to heat in Mycobacterium avium. Pathogens. 2020;9:657. doi: 10.3390/pathogens9080657. PubMed DOI PMC
Norton G.J., Williams M., Falkinham J.O., III, Honda J.R. Physical measures to reduce exposure to tap water–associated nontuberculous mycobacteria. Front. Publ. Health. 2020;8:190. doi: 10.3389/fpubh.2020.00190. PubMed DOI PMC
Moravkova M., Lamka J., Kriz P., Pavlik I. The presence of Mycobacterium avium subsp. avium in common pheasants (Phasianus colchicus) living in captivity and in other birds, vertebrates, non-vertebrates and the environment. Vet. Med. Czech. 2011;56:333–343. doi: 10.17221/1588-VETMED. DOI
Slamova R., Trckova M., Vondruskova H., Zraly Z., Pavlik I. Clay minerals in animal nutrition. Appl. Clay Sci. 2011;51:395–398. doi: 10.1016/j.clay.2011.01.005. DOI
Matlova L., Kaevska M., Moravkova M., Beran V., Shitaye J.E., Pavlik I. Mycobacteria in peat used as a supplement for pigs: Failure of different decontamination methods to eliminate the risk. Vet. Med. Czech. 2012;57:212–217. doi: 10.17221/5924-VETMED. DOI
Slany M., Jezek P., Fiserova V., Bodnarova M., Stork J., Havelkova M., Kalat F., Pavlik I. Mycobacterium marinum infections in humans and tracing of its possible environmental sources. Can. J. Microbiol. 2012;58:1–6. doi: 10.1139/w11-104. PubMed DOI
Kaevska M., Lvoncik S., Lamka J., Pavlik I., Slana I. Spread of Mycobacterium avium subsp. paratuberculosis through soil and grass on a mouflon (Ovis aries) pasture. Curr. Microbiol. 2014;69:495–500. doi: 10.1007/s00284-014-0618-4. PubMed DOI
Kaevska M., Sterba J., Svobodova J., Pavlik I. Mycobacterium avium subsp. avium and Mycobacterium neoaurum detection in an immunocompromised patient. Epidemiol. Infect. 2014;142:882–885. doi: 10.1017/S0950268813001660. PubMed DOI PMC
Modra H., Bartos M., Hribova P., Ulmann V., Hubelova D., Konecny O., Gersl M., Kudelka J., Voros D., Pavlik I. Detection of mycobacteria in the environment of the Moravian Karst (Bull Rock Cave and the relevant water catchment area): The impact of water sediment, earthworm castings and bat guano. Vet. Med. Czech. 2017;62:153–168. doi: 10.17221/126/2016-VETMED. DOI
Modra H., Ulmann V., Caha J., Hubelova D., Konecny O., Svobodova J., Weston R.T., Pavlik I. Socio-economic and environmental factors related to spatial differences in human non-tuberculous mycobacterial diseases in the Czech Republic. Int. J. Environ. Res. Public. Health. 2019;16:3969. doi: 10.3390/ijerph16203969. PubMed DOI PMC
Mourad A., Baker A.W., Stout J.E. Reduction in expected survival associated with nontuberculous mycobacterial pulmonary disease. Clin. Infect. Dis. 2021;72:e552–e557. doi: 10.1093/cid/ciaa1267. PubMed DOI PMC
Kim M.J., Kim K.M., Shin J.I., Ha J.H., Lee D.H., Choi J.G., Park J.S., Byun J.H., Yoo J.W., Eum S., et al. Identification of nontuberculous mycobacteria in patients with pulmonary diseases in Gyeongnam, Korea, using multiplex PCR and Multigene Sequence-Based Analysis. Can. J. Infect. Dis. Med. Microbiol. 2021;2021:8844306. doi: 10.1155/2021/8844306. PubMed DOI PMC
Park D.I., Kang S., Choi S. Evaluating the prevalence and incidence of bronchiectasis and nontuberculous mycobacteria in South Korea using the nationwide population data. Int. J. Environ. Res. Public. Health. 2021;18:9029. doi: 10.3390/ijerph18179029. PubMed DOI PMC
Ji L.C., Chen S., Piao W., Hong C.Y., Li J.L., Jiang Q. Increasing trends and species diversity of nontuberculous mycobacteria in a coastal migrant City-Shenzhen, China. Biomed. Environ. Sci. 2022;35:146–150. doi: 10.3967/bes2022.020. PubMed DOI
Gannon A.D., Darch S.E. Same game, different players: Emerging pathogens of the CF lung. mBio. 2021;12:e01217-20. doi: 10.1128/mBio.01217-20. PubMed DOI PMC
Hughes D.A., Bokobza I., Carr S.B. Eradication success for non-tuberculous mycobacteria in children with cystic fibrosis. Eur. Respir. J. 2021;57:2003636. doi: 10.1183/13993003.03636-2020. PubMed DOI PMC
Lobo Y., Lun K. Tattoo-associated cutaneous Mycobacterium mageritense infection: A case report and brief review of the literature. Case Rep. Dermatol. 2021;13:513–520. doi: 10.1159/000520255. PubMed DOI PMC
Trcko K., Plaznik J., Miljkovic J. Mycobacterium marinum hand infection masquerading as tinea manuum: A case report and literature review. Acta Dermatovenerol. Alp. Pannonica Adriat. 2021;30:91–93. doi: 10.15570/actaapa.2021.23. PubMed DOI
Hendrikx L., van Hees C.L.M., de Steenwinkel J.E.M., Bax H.I., Sprong T., Mulder B., Jansz A., van Griethuysen A., Bosboom R., Stemerding A., et al. Treatment and outcome of culture-confirmed Mycobacterium marinum disease. Open Forum Infect. Dis. 2022;9:ofac077. doi: 10.1093/ofid/ofac077. PubMed DOI PMC
Turner N.A., Sweeney M.I., Xet-Mull A.M., Storm J., Mithani S.K., Jones D.B., Miles J.J., Tobin D.M., Stout J.E. A cluster of nontuberculous mycobacterial tenosynovitis following hurricane relief efforts. Clin. Infect. Dis. 2021;72:e931–e937. doi: 10.1093/cid/ciaa1665. PubMed DOI
Wang C.J., Song Y., Li T., Hu J., Chen X., Li H. Mycobacterium smegmatis skin infection following cosmetic procedures: Report of two cases. Clin. Cosmet. Investig. Dermatol. 2022;15:535–540. doi: 10.2147/CCID.S359010. PubMed DOI PMC
Singh J., O’Donnell K., Nieves D.J., Adler-Shohet F.C., Arrieta A.C., Ashouri N., Ahuja G., Cheung M., Holmes W.N., Huoh K., et al. Invasive Mycobacterium abscessus outbreak at a pediatric dental clinic. Open Forum Infect. Dis. 2021;8:ofab165. doi: 10.1093/ofid/ofab165. PubMed DOI PMC
Nunes A.L., Coimbra A., Carvalho R., Figueiredo C., Almeida V., Lima J., Santos R.M. Mycobacterium szulgai: A rare cause of non-tuberculous mycobacteria disseminated infection. J. Med. Cases. 2022;13:61–65. doi: 10.14740/jmc3885. PubMed DOI PMC
Faverio P., De Giacomi F., Bodini B.D., Stainer A., Fumagalli A., Bini F., Luppi F., Aliberti S. Nontuberculous mycobacterial pulmonary disease: An integrated approach beyond antibiotics. ERJ Open Res. 2021;7:00574–02020. doi: 10.1183/23120541.00574-2020. PubMed DOI PMC
Tzou C.L., Dirac M.A., Becker A.L., Beck N.K., Weigel K.M., Meschke J.S., Cangelosi G.A. Association between Mycobacterium avium complex pulmonary disease and mycobacteria in home water and soil. Ann. Am. Thorac. Soc. 2020;17:57–62. doi: 10.1513/AnnalsATS.201812-915OC. PubMed DOI PMC
Rocha D., Felgueiras Ó., Duarte R. Can environmental determinants explain nontuberculous mycobacteria geographic incidence? Pulmonology. 2020;26:145–150. doi: 10.1016/j.pulmoe.2019.12.003. PubMed DOI
Shin J.I., Shin S.J., Shin M.K. Differential genotyping of Mycobacterium avium complex and its implications in clinical and environmental epidemiology. Microorganisms. 2020;8:98. doi: 10.3390/microorganisms8010098. PubMed DOI PMC
Keen E.C., Choi J., Wallace M.A., Azar M., Mejia-Chew C.R., Mehta S.B., Bailey T.C., Caverly L.J., Burnham C.D., Dantas G. Comparative genomics of Mycobacterium avium complex reveals signatures of environment-specific adaptation and community acquisition. mSystems. 2021;6:e0119421. doi: 10.1128/mSystems.01194-21. PubMed DOI PMC
DeFlorio-Barker S., Egorov A., Smith G.S., Murphy M.S., Stout J.E., Ghio A.J., Hudgens E.E., Messier K.P., Maillard J.M., Hilborn E.D. Environmental risk factors associated with pulmonary isolation of nontuberculous mycobacteria, a population-based study in the southeastern United States. Sci. Total Environ. 2021;763:144552. doi: 10.1016/j.scitotenv.2020.144552. PubMed DOI PMC
Pavlik I. Current knowledge about soil-borne diseases in humans and animals (sapronoses); Proceedings of the 20th Conference KWS OSIVA s.r.o.; Brno, Czech Republic. 12 January 2022; pp. 30–57. (In Czech)
De Groote M.A., Norman R.P., Kayte F., Falkinham J.O., III. Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl. Environ. Microbiol. 2006;72:7602–7606. doi: 10.1128/AEM.00930-06. PubMed DOI PMC
Mugetti D., Tomasoni M., Pastorino P., Esposito G., Menconi V., Dondo A., Prearo M. Gene sequencing and phylogenetic analysis: Powerful tools for an improved diagnosis of fish mycobacteriosis caused by Mycobacterium fortuitum group members. Microorganisms. 2021;9:797. doi: 10.3390/microorganisms9040797. PubMed DOI PMC
Pavlik I., Ulmann V., Weston R.T. Clinical relevance and environmental prevalence of Mycobacterium fortuitum group members. Comment on Mugetti et al. Gene sequencing and phylogenetic analysis: Powerful tools for an improved diagnosis of fish mycobacteriosis caused by Mycobacterium fortuitum group members. Microorganisms 2021, 9, 797. Microorganisms. 2021;9:2345. PubMed PMC
Mugetti D., Tomasoni M., Pastorino P., Esposito G., Menconi V., Dondo A., Prearo M. Reply to Pavlik et al. Clinical relevance and environmental prevalence of Mycobacterium fortuitum group members. Comment on “Mugetti et al. Gene sequencing and phylogenetic analysis: Powerful tools for an improved diagnosis of fish mycobacteriosis caused by Mycobacterium fortuitum group members. Microorganisms 2021, 9, 797”. Microorganisms. 2021;10:55. PubMed PMC
Zoccola R., Di Blasio A., Bossotto T., Pontei A., Angelillo M., Dondo A., Goria M., Zoppi S. Validation of a novel diagnostic approach combining the VersaTREK™ System for recovery and Real-Time PCR for the Identification of Mycobacterium chimaera in water samples. Microorganisms. 2021;9:1031. doi: 10.3390/microorganisms9051031. PubMed DOI PMC
Ulmann V., Modra H., Babak V., Weston R.T., Pavlik I. Recovery of mycobacteria from heavily contaminated environmental matrices. Microorganism. 2021;9:2178. doi: 10.3390/microorganisms9102178. PubMed DOI PMC
Pavlik I., Ulmann V., Modra H., Gersl M., Rantova B., Zukal J., Zukalova K., Konecny O., Kana V., Kubalek P., et al. Nontuberculous mycobacteria prevalence in bats’ guano from caves and attics of buildings studied by culture and qPCR examinations. Microorganism. 2021;9:2236. doi: 10.3390/microorganisms9112236. PubMed DOI PMC
Hubelova D., Ulmann V., Mikuska P., Licbinsky R., Alexa L., Modra H., Gersl M., Babak V., Weston R.T., Pavlik I. Nontuberculous mycobacteria prevalence in aerosol and spiders’ webs in karst caves: Low risk for speleotherapy. Microorganisms. 2021;9:2573. doi: 10.3390/microorganisms9122573. PubMed DOI PMC
Falkinham J.O., III. Ecology of nontuberculous mycobacteria. Microorganisms. 2021;9:2262. doi: 10.3390/microorganisms9112262. PubMed DOI PMC
Pavlik I., Ulmann V., Hubelova D., Weston R.T. Nontuberculous mycobacteria as sapronoses: A review. Microorganisms. 2022;10:1345. doi: 10.3390/microorganisms10071345. PubMed DOI PMC