Nontuberculous Mycobacteria as Sapronoses: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NU20-09-00114
Czech Health Research Council
PubMed
35889064
PubMed Central
PMC9315685
DOI
10.3390/microorganisms10071345
PII: microorganisms10071345
Knihovny.cz E-zdroje
- Klíčová slova
- PICA practices, antidiarrheal, earth-eating, environmental saprophytic mycobacteria, feeding and eating disorders, geochemistry, geophagia, mud, potentially pathogenic mycobacteria, saprophytic mycobacteria, saprozoic mycobacteria, soil consumption, soil exposure, trace elements deficiency,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mycobacteria are a unique group of microorganisms. They are characterised by exceptional adaptability and durability. They are capable of colonisation and survival even in very unfavourable conditions. In addition to the well-known obligate human pathogens, Mycobacterium tuberculosis and M. leprae, more than 200 other species have been described. Most of them form a natural part of the microflora of the external environment and thrive in aquatic and soil environments especially. For many of the mycobacterial species associated with human disease, their natural source has not yet been identified. From an ecological point of view, mycobacteria are saprophytes, and their application in human and animal diseases is opportunistic. Most cases of human disease from saprophytic mycobacteria occur in immunocompromised individuals. This adaptability and resilience to environmental pressures makes treatment of mycobacterial diseases (most often sapronoses and less often zoonoses) and permanent eradication of mycobacteria from the environment very difficult. Saprophytic mycobacterial diseases (sapronoses) are chronic and recurrent due to the fact of repeated endogenous or exogenous re-exposure. Therefore, knowledge regarding their occurrence in soil and dust would aid in the prevention of saprophytic mycobacterioses. In conjunction, their presence and ecological significance in the environment can be revealed.
Zobrazit více v PubMed
Iivanainen E. Isolation of mycobacteria from acidic forest soil samples–comparison of culture methods. J. Appl. Bacteriol. 1995;78:663–668. doi: 10.1111/j.1365-2672.1995.tb03113.x. PubMed DOI
Iivanainen E.K., Martikainen P.J., Raisanen M.L., Katila M.L. Mycobacteria in boreal coniferous forest soils. FEMS Microbiol. Ecol. 1997;23:325–332. doi: 10.1016/S0168-6496(97)00040-8. DOI
Kendall B.A., Winthrop K.L. Update on the epidemiology of pulmonary nontuberculous mycobacterial infections. Semin. Respir. Crit. Care Med. 2013;34:87–94. doi: 10.1055/s-0033-1333567. PubMed DOI
Yu J.R., Heo S.T., Lee K.H., Kim J., Sung J.K., Kim Y.R., Kim J.W. Skin and soft tissue infection due to rapidly growing mycobacteria: Case series and literature review. Infect. Chemother. 2013;45:85–93. doi: 10.3947/ic.2013.45.1.85. PubMed DOI PMC
Falkinham J.O., 3rd Environmental sources of nontuberculous mycobacteria. Clin. Chest Med. 2015;36:35–41. doi: 10.1016/j.ccm.2014.10.003. PubMed DOI
Hamada S., Ito Y., Hirai T., Murase K., Tsuji T., Fujita K., Mio T., Maekawa K., Fujii T., Ono S., et al. Impact of industrial structure and soil exposure on the regional variations in pulmonary nontuberculous mycobacterial disease prevalence. Int. J. Mycobacteriol. 2016;5:170–176. doi: 10.1016/j.ijmyco.2016.02.006. PubMed DOI
Hamilton K.A., Weir M.H., Haas C.N. Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology. Water Res. 2017;109:310–326. doi: 10.1016/j.watres.2016.11.053. PubMed DOI
Nishiuchi Y., Iwamoto T., Maruyama F. Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium complex. Front. Med. 2017;4:27. doi: 10.3389/fmed.2017.00027. PubMed DOI PMC
Claeys T.A., Robinson R.T. The many lives of nontuberculous mycobacteria. J. Bacteriol. 2018;200:e00739-17. doi: 10.1128/JB.00739-17. PubMed DOI PMC
Shah J.A., Lindestam Arlehamn C.S., Horne D.J., Sette A., Hawn T.R. Nontuberculous mycobacteria and heterologous immunity to tuberculosis. J. Infect. Dis. 2019;220:1091–1098. doi: 10.1093/infdis/jiz285. PubMed DOI PMC
Parikh A., Vinnard C., Fahrenfeld N., Davidow A.L., Patrawalla A., Lardizabal A., Gow A., Panettieri R., Gennaro M. Revisiting John Snow to meet the challenge of nontuberculous mycobacterial lung disease. Int. J. Environ. Res. Public Health. 2019;16:4250. doi: 10.3390/ijerph16214250. PubMed DOI PMC
Shin J.I., Shin S.J., Shin M.K. Differential genotyping of Mycobacterium avium complex and its implications in clinical and environmental epidemiology. Microorganisms. 2020;8:98. doi: 10.3390/microorganisms8010098. PubMed DOI PMC
Munjal S., Munjal S., Gao J., Venketaraman V. Exploring potential COPD immunosuppression pathways causing increased susceptibility for MAC infections among COPD patients. Clin. Pract. 2021;11:77. doi: 10.3390/clinpract11030077. PubMed DOI PMC
Mortaz E., Moloudizargari M., Varahram M., Movassaghi M., Garssen J., Kazempour Dizagie M., Mirsaeidi M., Adcock I.M. What immunological defects predispose to non-tuberculosis mycobacterial infections? Iran J. Allergy Asthma Immunol. 2018;17:100–109. PubMed
Pontiroli A., Khera T.T., Oakley B.B., Mason S., Dowd S.E., Travis E.R., Erenso G., Aseffa A., Courtenay O., Wellington E.M. Prospecting environmental mycobacteria: Combined molecular approaches reveal unprecedented diversity. PLoS ONE. 2013;8:e68648. doi: 10.1371/journal.pone.0068648. PubMed DOI PMC
McClure R., Naylor D., Farris Y., Davison M., Fansler S.J., Hofmockel K.S., Jansson J.K. Development and analysis of a stable, reduced complexity model soil microbiome. Front. Microbiol. 2020;11:1987. doi: 10.3389/fmicb.2020.01987. PubMed DOI PMC
Bartelme R.P., Custer J.M., Dupont C.L., Espinoza J.L., Torralba M., Khalili B., Carini P. Influence of substrate concentration on the culturability of heterotrophic soil microbes isolated by High-Throughput Dilution-to-Extinction cultivation. mSphere. 2020;5:e00024-20. doi: 10.1128/mSphere.00024-20. PubMed DOI PMC
Terskikh V.I. Diseases of humans and animals caused by microbes able to reproduce in an abiotic environment that represents their living habitat. Zh. Mikrobiol. Epidemiol. Immunobiol. 1958;8:118–122. (In Russian) PubMed
Litvin V.Y., Pushkareva V.I. The possible mechanism in the formation of epidemic variants of the causative agents of sapronoses in the soil or water. Zh. Mikrobiol. Epidemiol. Immunobiol. 1994;5:89–95. (In Russian) PubMed
Buzolyova L.S., Somov G.P. Autotrophic assimilation of CO2 and C1-compounds by pathogenic bacteria. Biochemistry. 1999;64:1146–1149. PubMed
Iurova M.A., Pushkareva V.I., Poliakov V.I. Presence of Yersinia enterocolitica in conditions of agro complex. Zh. Mikrobiol. Epidemiol. Immunobiol. 2013;3:31–38. (In Russian) PubMed
Kuris A.M., Lafferty K.D., Sokolow S.H. Sapronosis: A distinctive type of infectious agent. Trends Parasitol. 2014;30:386–393. doi: 10.1016/j.pt.2014.06.006. PubMed DOI
Ghosh S.K., Mehta P.K., Patel J.G., Kashyap S.K., Chatterjee S.K. Studies on saprozoonosis. I. A survey on Aspergillus species with special reference to occupational habits. J. Environ. Sci. Health B. 1979;14:97–117. doi: 10.1080/03601237909372116. PubMed DOI
Kakoma I., Ristic M. Human-Bovine Ecosystems: Reflections on Zoonoses in the Tropics. In: Ristic M., McIntyre W.I.M., editors. Diseases of Cattle in the Tropics. Current Topics in Veterinary Medicine and Animal Science. Volume 6. Springer; Dordrecht, Germany: 1981. pp. 39–51.
Jaffry K.T., Ali S., Rasool A., Raza A., Gill Z.J. Zoonoses. Int. J. Agric. Biol. 2009;11:217–220.
Pavlik I., Ayele W.Y., Parmova I., Melicharek I., Hanzlikova M., Kormendy B., Nagy G., Cvetnic Z., Katalinic-Jankovic V., Ocepek M., et al. Mycobacterium tuberculosis in animal and human populations in six Central European countries during 1990–1999. Vet. Med-Czech. 2003;48:83–89. doi: 10.17221/5754-VETMED. DOI
Pavlik I., Trcka I., Parmova I., Svobodova J., Melicharek I., Nagy G., Cvetnic Z., Ocepek M., Pate M., Lipiec M. Detection of bovine and human tuberculosis in cattle and other animals in six Central European countries during the years 2000–2004. Vet. Med-Czech. 2005;50:291–299. doi: 10.17221/5626-VETMED. DOI
Moravkova M., Slany M., Trcka I., Havelkova M., Svobodova J., Skoric M., Heinigeova B., Pavlik I. Human-to-human and human-to-dog Mycobacterium tuberculosis transmission studied by IS6110 RFLP analysis: A case report. Vet. Med-Czech. 2011;56:314–317. doi: 10.17221/1547-VETMED. DOI
Karimova T.Y., Neronov V.M., Popov V.P. Development of views on natural focality of plague. Biol. Bull. 2010;37:725–732. doi: 10.1134/S1062359010070083. DOI
Bultman M.W., Fischer S.F., Pappagianis F.S. The ecology of soil-borne human pathogens. In: Selenius O., editor. Essentials of Medical Geology: Impacts of the Natural Environment on Public Health. Elsevier Academic Press; Cambridge, MA, USA: 2005. pp. 481–497. Chapter 19.
Selinus O., editor. Essentials of Medical Geology. 2nd ed. Springer; Heidelberg, Germany: Dordrecht, The Netherlands: London, UK: New York, NY, USA: 2013. 805p
Jeffery S., Van der Putten W.H. Soil Borne Human Diseases. Publications Office of the European Union; Luxembourg: 2011. 56p
Kazda J. The Ecology of Mycobacteria. Kluwer Academic Publishers; Dordrecht, The Netherlands: Boston, MA, USA: London, UK: 2000. 72p
Alvarez E., Tavel E. Recherches sur le bacille de Lustgarten. Arch. Physiol. Normal Pathol. 1885;6:303–321.
Lehmann K.B., Neumann R. Lehmann’s Medizin Handatlanten. X. Atlas und GrundriB der Bakteriologie und Lehrbuch der Speziellen Bakteriologischen Diagnostik. 2nd ed. München, Germany: 1899.
Kazda J. The chronology of mycobacteria and the development of mycobacterial ecology. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 1–11. Chapter 1.
Steinert M., Birkness K., White E., Fields B., Quinn F. Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl. Environ. Microbiol. 1998;64:2256–2261. doi: 10.1128/AEM.64.6.2256-2261.1998. PubMed DOI PMC
Ashbolt N.J. Environmental (saprozoic) pathogens of engineered water systems: Understanding their ecology for risk assessment and management. Pathogens. 2015;4:390–405. doi: 10.3390/pathogens4020390. PubMed DOI PMC
Kazda J., Pavlik I. The ecology of obligate pathogens. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 13–19. Chapter 2.
LPSN: List of Prokaryotic Names with Standing in Nomenclature. [(accessed on 10 October 2021)]. Available online: https://lpsn.dsmz.de/
Pavlik I., Kazda J., Falkinham J. The ecology of potentially pathogenic mycobacteria. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 21–79. Chapter 3.
Hubalek Z. Emerging human infectious diseases: Anthroponoses, zoonoses, and sapronoses. Emerg. Infect. Dis. 2003;9:403–404. doi: 10.3201/eid0903.020208. PubMed DOI PMC
Hubalek Z., Rudolf I., editors. Microbial Zoonoses and Sapronoses. Springer; Heidelberg, Germany: Dordrecht, The Netherlands: London, UK: New York, NY, USA: 2011. 457p
Allen A.R., Ford T., Skuce R.A. Does Mycobacterium tuberculosis var. bovis survival in the environment confound bovine tuberculosis control and eradication? A literature review. Vet. Med. Int. 2021;2021:8812898. PubMed PMC
Wong E.B. It is time to focus on asymptomatic tuberculosis. Clin. Infect. Dis. 2021;15:e1044–e1046. doi: 10.1093/cid/ciaa1827. PubMed DOI PMC
Honda J.R., Virdi R., Chan E.D. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. Front. Microbiol. 2018;9:2029. doi: 10.3389/fmicb.2018.02029. PubMed DOI PMC
Varghese B., Al-Hajoj S. A global update on rare non-tuberculous mycobacteria in humans: Epidemiology and emergence. Int. J. Tuberc. Lung Dis. 2020;24:214–223. doi: 10.5588/ijtld.19.0194. PubMed DOI
Dolezalova K., Gopfertova D. Ten years’ experience with the discontinuation of the Bacillus Calmette-Guérin vaccination in the Czech Republic. Int. J. Mycobacteriol. 2021;10:193–198. PubMed
Pavlik I., Falkinham J., Kazda J. Transmission of mycobacteria from the environment to susceptible hosts. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 283–312. Chapter 7.
Zinsstag J., Borna M., Pavlik I. Mycobacterioses. In: Palmer S.R., Soulsby L., Torgerson P.R., Brown D.W.G., editors. Oxford Textbook of Zoonoses. Biology, Clinical Practice and Public Health Control. 2nd ed. Oxford University Press; Oxford, UK: 2011. pp. 128–135. Chapter 15.
Al-Anazi K.A., Al-Jasser A.M., Al-Anazi W.K. Infections caused by non-tuberculous mycobacteria in recipients of hematopoietic stem cell transplantation. Front. Oncol. 2014;10:311. doi: 10.3389/fonc.2014.00311. PubMed DOI PMC
Mara D., Horan N. Handbook of Water and Wastewater Microbiology. Academic Press; London, UK: 2003. 610p
Pedley S., Bartram J., Rees G., Dufou A., Cotruvo J.A. Pathogenic Mycobacteria in Water. WHO; Geneva, Switzerland: TJ International (Ltd.); Cornwall, UK: 2004. 237p
Whiley H., Keegan A., Giglio S., Bentham R. Mycobacterium avium complex-the role of potable water in disease transmission. J. Appl. Microbiol. 2012;113:223–232. doi: 10.1111/j.1365-2672.2012.05298.x. PubMed DOI
Falkinham J.O., 3rd Living with Legionella and other waterborne pathogens. Microorganisms. 2020;18:2026. doi: 10.3390/microorganisms8122026. PubMed DOI PMC
Ijaz M.K., Zargar B., Wright K.E., Rubino J.R., Sattar S.A. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies. Am. J. Infect. Control. 2016;44((Suppl. S9)):S109–S120. doi: 10.1016/j.ajic.2016.06.008. PubMed DOI PMC
Gopalaswamy R., Shanmugam S., Mondal R., Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections—A comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci. 2020;27:74. doi: 10.1186/s12929-020-00667-6. PubMed DOI PMC
Wang H., Bedard E., Prevost M., Camper A.K., Hill V.R., Pruden A. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. Water Res. 2017;117:68–86. doi: 10.1016/j.watres.2017.03.046. PubMed DOI PMC
Loret J.F., Dumoutier N. Non-tuberculous mycobacteria in drinking water systems: A review of prevalence data and control means. Int. J. Hyg. Environ. Health. 2019;222:628–634. doi: 10.1016/j.ijheh.2019.01.002. PubMed DOI
Williams M.M., Armbruster C.R., Arduino M.J. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: A review. Biofouling. 2013;29:147–162. doi: 10.1080/08927014.2012.757308. PubMed DOI PMC
Juzga-Corrales D.C., Moliner-Calderon E., Coll-Figa P., Leon-Vintro X. Mycobacterium malmoense parotid gland infection. Enferm. Infect. Microbiol. Clin. 2019;37:545–547. doi: 10.1016/j.eimc.2019.01.009. (In English and Spanish) PubMed DOI
Scanlon M.M., Gordon J.L., McCoy W.F., Cain M.F. Water management for construction: Evidence for risk characterization in community and healthcare settings: A systematic review. Int. J. Environ. Res. Public Health. 2020;17:2168. doi: 10.3390/ijerph17062168. PubMed DOI PMC
Maalouly C., Devresse A., Martin A., Rodriguez-Villalobos H., Kanaan N., Belkhir L. Coinfection of Mycobacterium malmoense and Mycobacterium chimaera in a kidney transplant recipient: A case report and review of the literature. Transpl. Infect. Dis. 2020;22:e13241. doi: 10.1111/tid.13241. PubMed DOI
Piyumal Samaranayake W.A.M., Kesson A.M., Karpelowsky J.S., Outhred A.C., Marais B.J. Port-site infection due to nontuberculous mycobacteria following laparoscopic surgery. Int. J. Mycobacteriol. 2020;9:231–238. doi: 10.4103/ijmy.ijmy_32_20. PubMed DOI
Arfaatabar M., Karami P., Khaledi A. An update on prevalence of slow-growing mycobacteria and rapid-growing mycobacteria retrieved from hospital water sources in Iran—A systematic review. Germs. 2021;11:97–104. doi: 10.18683/germs.2021.1245. PubMed DOI PMC
Habermann S., Ferran E., Hatcher J., Lyall H., De La Fuente J., Whittaker E. Outbreak of non-tuberculous mycobacteria in a paediatric bone marrow transplant unit associated with water contamination of needle-free connectors and literature review. Bone Marrow Transpl. 2021;56:2305–2308. doi: 10.1038/s41409-021-01239-4. PubMed DOI PMC
Shuval H.I. Effects of wastewater irrigation of pastures on the health of farm animals and humans. Rev. Sci. Technol. 1991;10:847–866. doi: 10.20506/rst.10.3.564. PubMed DOI
Pachepsky Y., Shelton D.R., McLain J.E.T., Patel J., Mandrell R.E. Irrigation waters as a source of pathogenic microorganisms in produce: A review. Adv. Agron. 2011;113:73–138.
Richards J.P., Ojha A.K. Mycobacterial biofilms. Microbiol. Spectr. 2014;2 doi: 10.1128/microbiolspec.MGM2-0004-2013. PubMed DOI
Ojha A.K., Jacobs W.R., Jr., Hatfull G.F. Genetic dissection of mycobacterial biofilms. Methods. Mol. Biol. 2015;1285:215–226. PubMed PMC
Esteban J., Garcia-Coca M. Mycobacterium biofilms. Front. Microbiol. 2018;8:2651. doi: 10.3389/fmicb.2017.02651. PubMed DOI PMC
Bittner M.J., Preheim L.C. Other slow-growing nontuberculous mycobacteria. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.TNMI7-0012-2016. PubMed DOI
Lee J.C., Whang K.S. Mycobacterium aquiterrae sp. nov., a rapidly growing bacterium isolated from groundwater. Int. J. Syst. Evol. Microbiol. 2017;67:4104–4110. PubMed
Cydzik-Kwiatkowska A., Zielinska M. Bacterial communities in full-scale wastewater treatment systems. World J. Microbiol. Biotechnol. 2016;32:66. doi: 10.1007/s11274-016-2012-9. PubMed DOI PMC
Chen G.Q., Wu Y.H., Wang Y.H., Chen Z., Tong X., Bai Y., Luo L.W., Xu C., Hu H.Y. Effects of microbial inactivation approaches on quantity and properties of extracellular polymeric substances in the process of wastewater treatment and reclamation: A review. J. Hazard. Mater. 2021;413:125283. doi: 10.1016/j.jhazmat.2021.125283. PubMed DOI
Falkinham J. Physiological ecology of environmental saprophytic and potentially pathogenic mycobacteria. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 81–87. Chapter 4.
Beerwerth W. Mycobacterial soil flora in the course of the seasons. Prax. Pneumol. 1971;25:661–668. (In German) PubMed
Pavlik I., Falkinham J., Kazda J. Environments providing favourable conditions for the multiplication and transmission of mycobacteria. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 89–197. Chapter 5.
Beerwerth W., Kessel U. Mycobacteria in the environment of man and animal. Zentralbl. Bakteriol. 1976;235:177–183. (In German) PubMed
Beerwerth W., Schurmann J. Contribution to the ecology of mycobacteria. Zentralbl. Bakteriol. 1969;211:58–69. (In German) PubMed
Kaevska M., Hruska K. Mycobacteria in water, feedstocks and food: Analysis of publications. Vet. Med-Czech. 2010;55:571–580. doi: 10.17221/2946-VETMED. DOI
Pereira A.C., Ramos B., Reis A.C., Cunha M.V. Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological niches. Microorganisms. 2020;8:1380. doi: 10.3390/microorganisms8091380. PubMed DOI PMC
Falkinham J.O., III. Ecology of Nontuberculous Mycobacteria. Microorganisms. 2021;9:2262. doi: 10.3390/microorganisms9112262. PubMed DOI PMC
Kauker E., Rheinwald W. Studies on the occurrence of atypical mycobacteria, group 3 Runyon, in the bedding material (sawdust) and feed of swine in North Hesse. Berl. Munch. Tierarztl. Wochenschr. 1972;85:384–387. (In German) PubMed
Kaevska M., Lvoncik S., Slana I., Kulich P., Kralik P. Microscopy, culture, and quantitative real-time PCR examination confirm internalization of mycobacteria in plants. Appl. Environ. Microbiol. 2014;80:3888–3894. doi: 10.1128/AEM.00496-14. PubMed DOI PMC
Kaevska M., Lvoncik S., Lamka J., Pavlik I., Slana I. Spread of Mycobacterium avium subsp. paratuberculosis through soil and grass on a mouflon (Ovis aries) pasture. Curr. Microbiol. 2014;69:495–500. PubMed
Bouam A., Armstrong N., Levasseur A., Drancourt M. Mycobacterium terramassiliense, Mycobacterium rhizamassiliense and Mycobacterium numidiamassiliense sp. nov., three new Mycobacterium simiae complex species cultured from plant roots. Sci. Rep. 2018;8:9309. doi: 10.1038/s41598-018-27629-1. PubMed DOI PMC
Tran P.M., Dahl J.L. Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., isolated from the pitcher plant Sarracenia purpurea. Int. J. Syst. Evol. Microbiol. 2016;66:4480–4485. doi: 10.1099/ijsem.0.001377. PubMed DOI
Walsh C.M., Gebert M.J., Delgado-Baquerizo M., Maestre F.T., Fierer N. A global survey of mycobacterial diversity in soil. Appl. Environ. Microbiol. 2019;85:e01180-19. doi: 10.1128/AEM.01180-19. PubMed DOI PMC
Honda J.R., Hasan N.A., Davidson R.M., Williams M.D., Epperson L.E., Reynolds P.R., Smith T., Iakhiaeva E., Bankowski M.J., Wallace R.J., Jr., et al. Environmental nontuberculous mycobacteria in the Hawaiian Islands. PLoS Negl. Trop. Dis. 2016;10:e0005068. doi: 10.1371/journal.pntd.0005068. PubMed DOI PMC
Baker A.W., Lewis S.S., Alexander B.D., Chen L.F., Wallace R.J., Jr., Brown-Elliott B.A., Isaacs P.J., Pickett L.C., Patel C.B., Smith P.K., et al. Two-phase hospital-associated outbreak of Mycobacterium abscessus: Investigation and mitigation. Clin. Infect. Dis. 2017;64:902–911. doi: 10.1093/cid/ciw877. PubMed DOI PMC
Doyle R.M., Rubio M., Dixon G., Hartley J., Klein N., Coll P., Harris K.A. Cross-transmission is not the source of new Mycobacterium abscessus infections in a Multicenter Cohort of Cystic Fibrosis Patients. Clin. Infect. Dis. 2020;70:1855–1864. doi: 10.1093/cid/ciz526. PubMed DOI PMC
Vaerewijck M.J., Huys G., Palomino J.C., Swings J., Portaels F. Mycobacteria in drinking water distribution systems: Ecology and significance for human health. FEMS Microbiol. Rev. 2005;29:911–934. doi: 10.1016/j.femsre.2005.02.001. PubMed DOI
Quintás Viqueira A., Pérez Romero C., Toro Rueda C., Sánchez Calles A.M., Blázquez González J.A., Alejandre Leyva M. Mycobacterium chimaera in heater-cooler devices: An experience in a tertiary hospital in Spain. New Microbes New Infect. 2020;39:100757. doi: 10.1016/j.nmni.2020.100757. PubMed DOI PMC
Lange C., Böttger E.C., Cambau E., Griffith D.E., Guglielmetti L., van Ingen J., Knight S.L., Marras T.K., Olivier K.N., Santin M., et al. Consensus management recommendations for less common non-tuberculous mycobacterial pulmonary diseases. Lancet Infect. Dis. 2022;22:e178–e190. doi: 10.1016/S1473-3099(21)00586-7. PubMed DOI
Abrahams P.W. Involuntary soil ingestion and geophagia: A source and sink of mineral nutrients and potentially harmful elements to consumers of earth materials. Appl. Geochem. 2012;27:954–968. doi: 10.1016/j.apgeochem.2011.05.003. DOI
Wilson M.J. Clay mineralogical and related characteristics of geophagic materials. J. Chem. Ecol. 2003;29:1525–1547. doi: 10.1023/A:1024262411676. PubMed DOI
Karoui A., Karoui H. Pica in Tunisian children. Results of a survey performed in a polyclinic of the Tunisian social security national administration. Pediatrie. 1993;48:565–569. (In French) PubMed
Karoui A., Karoui H. Geophagia in Tunisian children—Results of a prospective-study in children day-care-center. Pediatrie. 1993;48:565–569. PubMed
Glickman L.T., Camara A.O., Glickmancand N., McCabe G.P. Nematode intestinal parasites of children in rural Guinea, Africa: Prevalence and relationship to geophagia. Int. J. Epidemiol. 1999;28:169–174. doi: 10.1093/ije/28.1.169. PubMed DOI
Njiru H., Elchalal U., Paltiel O. Geophagy during pregnancy in Africa: A literature review. Obstet. Gynecol. Surv. 2011;66:452–459. doi: 10.1097/OGX.0b013e318232a034. PubMed DOI
Kortei N.K., Koryo-Dabrah A., Akonor P.T., Manaphraim N.Y.B., Ayim-Akonor M., Boadi N.O., Essuman E.K., Tettey C. Potential health risk assessment of toxic metals contamination in clay eaten as pica (geophagia) among pregnant women of Ho in the Volta Region of Ghana. BMC Pregnancy Childbirth. 2020;20:160. doi: 10.1186/s12884-020-02857-4. PubMed DOI PMC
Abrahams P.W., Davies T.C., Solomon A.O., Trow A.J., Wragg J. Human geophagia, Calabash chalk and undongo: Mineral element nutritional implications. PLoS ONE. 2013;8:e53304. PubMed PMC
Abrahams P.W., Parsons J.A. Geophagy in the tropics: A literature review. Geogr. J. 1996;162:63–72. doi: 10.2307/3060216. DOI
Narh C.T., Dzamalala C.P., Mmbaga B.T., Menya D., Mlombe Y., Finch P., Nyakunga G., Schuz J., McCormack V. Geophagia and risk of squamous cell esophageal cancer in the African esophageal cancer corridor: Findings from the ESCCAPE multicountry case-control studies. Int. J. Cancer. 2021;149:1274–1283. doi: 10.1002/ijc.33688. PubMed DOI PMC
Vermeer D. A note on geophagy among the Afenmai and adjacent peoples of Bendel State, Nigeria. Afr. Notes. 1979;8:13–14.
Abrahams P.W., Follansbee M.H., Hunt A., Smith B., Wragg J. Iron nutrition and possible lead toxicity: An appraisal of geophagy undertaken by pregnant women of UK Asian communities. Appl. Geochem. 2006;21:98–108. doi: 10.1016/j.apgeochem.2005.09.015. DOI
Dean J.R., Deary M.E., Gbefa B.K., Scott W.C. Characterisation and analysis of persistent organic pollutants and major, minor and trace elements in Calabash chalk. Chemosphere. 2004;57:21–25. doi: 10.1016/j.chemosphere.2004.05.023. PubMed DOI
Felten M.K., Knoetze K. Mycobacteria in sputum and soil ingestion. Lancet. 1987;1:334–335. doi: 10.1016/S0140-6736(87)92069-1. PubMed DOI
Knezevich M. Geophagy as a therapeutic mediator of endoparasitism in a free-ranging group of rhesus macaques (Macaca mulatta) Am. J. Primatol. 1998;44:71–82. doi: 10.1002/(SICI)1098-2345(1998)44:1<71::AID-AJP6>3.0.CO;2-U. PubMed DOI
Mahaney W.C., Bezada M., Hancock R.G.V., Aufreiter S., Perez F.L. Geophagy of Holstein hybrid cattle in the northern Andes, Venezuela. Mt. Res. Dev. 1996;16:177–180. doi: 10.2307/3674011. DOI
Diamond J., Bishop K.D., Gilardi J.D. Geophagy in New Guinea birds. Ibis. 1999;141:181–193. doi: 10.1111/j.1474-919X.1999.tb07540.x. DOI
Gilardi J.D., Duffey S.S., Munn C.A., Tell L.A. Biochemical functions of geophagy in parrots: Detoxification of dietary toxins and cytoprotective effects. J. Chem. Ecol. 1999;25:897–922. doi: 10.1023/A:1020857120217. DOI
Trckova M., Matlova L., Dvorska L., Pavlik I. Kaolin, bentonite, and zeolites as feed supplements for animals: Health advantages and risks. Vet. Med-Czech. 2004;49:389–399. doi: 10.17221/5728-VETMED. DOI
Trckova M., Vondruskova H., Zraly Z., Alexa P., Hamrik J., Kummer V., Maskova J., Mrlik V., Krizova K., Slana I., et al. The effect of kaolin feeding on efficiency, health status and course of diarrhoeal infections caused by enterotoxigenic Escherichia coli strains in weaned piglets. Vet. Med-Czech. 2009;54:47–63. doi: 10.17221/5/2009-VETMED. DOI
Vondruskova H., Slamova R., Trckova M., Zraly Z., Pavlik I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Vet. Med-Czech. 2010;55:199–224. doi: 10.17221/2998-VETMED. DOI
Slamova R., Trckova M., Vondruskova H., Zraly Z., Pavlik I. Clay minerals in animal nutrition. Appl. Clay Sci. 2011;51:395–398. doi: 10.1016/j.clay.2011.01.005. DOI
Trckova M., Matlova L., Hudcova H., Faldyna M., Zraly Z., Dvorska L., Beran V., Pavlik I. Peat as a feed supplement for animals: A literature review. Vet. Med-Czech. 2005;50:361–377. doi: 10.17221/5635-VETMED. DOI
Pavlik I., Falkinham J. The occurrence of pathogenic and potentially pathogenic mycobacteria in animals and the role of the environment in the spread of infection. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 199–281. Chapter 6.
Pavlik I., Hruska K. Photographs. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 339–519. Chapter 10.
Matlova L., Dvorska L., Ayele W.Y., Bartos M., Amemori T., Pavlik I. Distribution of Mycobacterium avium complex isolates in tissue samples of pigs fed peat naturally contaminated with mycobacteria as a supplement. J. Clin. Microbiol. 2005;43:1261–1268. doi: 10.1128/JCM.43.3.1261-1268.2005. PubMed DOI PMC
Trckova M., Zraly Z., Matlova L., Beran V., Moravkova M., Svobodova J., Pavlik I. Effects of peat feeding on the performance and health status of fattening pigs and environmentally derived mycobacteria. Vet. Med-Czech. 2006;51:533–543. doi: 10.17221/5587-VETMED. DOI
Agdestein A., Johansen T.B., Polacek V., Lium B., Holstad G., Vidanovic D., Aleksic-Kovacevic S., Jorgensen A., Zultauskas J., Nilsen S.F., et al. Investigation of an outbreak of mycobacteriosis in pigs. BMC Vet. Res. 2011;7:63. doi: 10.1186/1746-6148-7-63. PubMed DOI PMC
Agdestein A., Olsen I., Jorgensen A., Djonne B., Johansen T.B. Novel insights into transmission routes of Mycobacterium avium in pigs and possible implications for human health. Vet. Res. 2014;45:46. doi: 10.1186/1297-9716-45-46. PubMed DOI PMC
Johansen T.B., Agdestein A., Lium B., Jorgensen A., Djonne B. Mycobacterium avium subsp. hominissuis infection in swine associated with peat used for bedding. Biomed. Res. Int. 2014;2014:189649. PubMed PMC
Wagner K.M., Schulz J., Kemper N. Examination of the hygienic status of selected organic enrichment materials used in pig farming with special emphasis on pathogenic bacteria. Porcine Health Manag. 2018;4:24. doi: 10.1186/s40813-018-0100-y. PubMed DOI PMC
Matlova L., Kaevska M., Moravkova M., Beran V., Shitaye J.E., Pavlik I. Mycobacteria in peat used as a supplement for pigs: Failure of different decontamination methods to eliminate the risk. Vet. Med-Czech. 2012;57:212–217. doi: 10.17221/5924-VETMED. DOI
Matlova L., Dvorska L., Bartos M., Docekal J., Trckova M., Pavlik I. Tuberculous lesions in pig lymph nodes caused by kaolin fed as supplement. Vet. Med-Czech. 2004;49:379–388. doi: 10.17221/5727-VETMED. DOI
Yu Z., Stewart G.R., Mohn W.W. Apparent contradiction: Psychrotolerant bacteria from hydrocarbon-contaminated arctic tundra soils that degrade diterpenoids synthesized by trees. Appl. Environ. Microbiol. 2000;66:5148–5154. doi: 10.1128/AEM.66.12.5148-5154.2000. PubMed DOI PMC
Ferrera-Rodriguez O., Greer C.W., Juck D., Consaul L.L., Martinez-Romero E., Whyte L.G. Hydrocarbon-degrading potential of microbial communities from Arctic plants. J. Appl. Microbiol. 2013;114:71–83. doi: 10.1111/jam.12020. PubMed DOI
Zhang G., Cao T., Ying J., Yang Y., Ma L. Diversity and novelty of Actinobacteria in Arctic marine sediments. Antonie Van Leeuwenhoek. 2014;105:743–754. doi: 10.1007/s10482-014-0130-7. PubMed DOI
Muangchinda C., Chavanich S., Viyakarn V., Watanabe K., Imura S., Vangnai A.S., Pinyakong O. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ. Sci. Pollut. Res. Int. 2015;22:4725–4735. doi: 10.1007/s11356-014-3721-y. PubMed DOI
Haas B., Soto K.J., Day D.S., Roy A.C., Gagnon M.C., Alt J.R., Labrie P. Mycobacterium hassiacum: A thermophilic Mycobacterium species to demonstrate thermal disinfection of medical devices. BMC Res. Notes. 2020;13:140. doi: 10.1186/s13104-020-04978-7. PubMed DOI PMC
Ermolenko Z.M., Kholodenko V.P., Chugunov V.A., Zhirkova N.A., Rasulova G.E. A mycobacterial strain isolated from the oil of the Ukhtinskoe oil field: Identification and degradative properties. Microbiology. 1997;66:542–545.
George K.L., Parker B.C., Gruft H., Falkinham J.O., 3rd Epidemiology of infection by nontuberculous mycobacteria. II. Growth and survival in natural waters. Am. Rev. Respir. Dis. 1980;122:89–94. PubMed
Clark H.F., Shepard C.C. Effect of environmental temperatures on infection with Mycobacterium marinum (balnei) of mice and a number of poikilothermic species. J. Bacteriol. 1963;86:1057–1069. doi: 10.1128/jb.86.5.1057-1069.1963. PubMed DOI PMC
Kim T.H., Kubica G.P. Long-term preservation and storage of mycobacteria. Appl. Microbiol. 1972;24:311–317. doi: 10.1128/am.24.3.311-317.1972. PubMed DOI PMC
Shinu P., AshokKumar Singh V., Nair A., Farooq R., Ishaq S. Long-term storage at −80 °C: Effect on rate of recovery of Mycobacterium tuberculosis from direct acid-fast bacilli smear-positive sputum samples. J. Clin. Lab. Anal. 2016;30:567–576. doi: 10.1002/jcla.21904. PubMed DOI PMC
Pennings L.J., Zweijpfenning S., Ruth M.M., Wattenberg M., Boeree M.J., Hoefsloot W., van Ingen J. Mycobacterium avium complex bacteria remain viable in sputum during storage and refrigeration. Diagn. Microbiol. Infect. Dis. 2018;92:309–310. doi: 10.1016/j.diagmicrobio.2018.06.017. PubMed DOI
Barbier E., Rochelet M., Gal L., Boschiroli M.L., Hartmann A. Impact of temperature and soil type on Mycobacterium bovis survival in the environment. PLoS ONE. 2017;12:e0176315. doi: 10.1371/journal.pone.0176315. PubMed DOI PMC
Santos R., de Carvalho C.C., Stevenson A., Grant I.R., Hallsworth J.E. Extraordinary solute-stress tolerance contributes to the environmental tenacity of mycobacteria. Environ. Microbiol. Rep. 2015;7:746–764. doi: 10.1111/1758-2229.12306. PubMed DOI
Thorel M.F., Falkinham J.O., 3rd, Moreau R.G. Environmental mycobacteria from alpine and subalpine habitats. FEMS Microbiol. Ecol. 2004;49:343–347. doi: 10.1016/j.femsec.2004.04.016. PubMed DOI
Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: The new mycobacteria of the 1990s. Clin. Microbiol. Rev. 2003;16:319–354. doi: 10.1128/CMR.16.2.319-354.2003. PubMed DOI PMC
Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin. Microbiol. Rev. 2014;27:727–752. doi: 10.1128/CMR.00035-14. PubMed DOI PMC
Pavlik I., Svastova P., Bartl J., Dvorska L., Rychlik I. Relationship between IS901 in the Mycobacterium avium complex strains isolated from birds, animals, humans and environment and virulence for poultry. Clin. Diag. Lab. Immunol. 2000;7:212–217. doi: 10.1128/CDLI.7.2.212-217.2000. PubMed DOI PMC
Schwabacher H. A strain of Mycobacterium isolated from skin lesions of a cold-blooded animal, Xenopus laevis, and its relation to atypical acid-fast bacilli occurring in man. J. Hyg. 1959;57:57–67. doi: 10.1017/S0022172400019896. PubMed DOI PMC
Cook G.M., Berney M., Gebhard S., Heinemann M., Cox R.A., Danilchanka O., Niederweis M. Physiology of mycobacteria. Adv. Microb. Physiol. 2009;55:81–182. discussion 318–319. PubMed PMC
Archuleta R.J., Mullens P., Primm T.P. The relationship of temperature to desiccation and starvation tolerance of the Mycobacterium avium complex. Arch. Microbiol. 2002;178:311–314. doi: 10.1007/s00203-002-0455-x. PubMed DOI
Argueta C., Yoder S., Holtzman A.E., Aronson T.W., Glover N., Berlin O.G., Stelma G.N., Jr., Froman S., Tomasek P. Isolation and identification of nontuberculous mycobacteria from foods as possible exposure sources. J. Food Prot. 2000;63:930–933. doi: 10.4315/0362-028X-63.7.930. PubMed DOI
Zwielehner J., Handschur M., Michaelsen A., Irez S., Demel M., Denner E.B., Haslberger A.G. DGGE and real-time PCR analysis of lactic acid bacteria in bacterial communities of the phyllosphere of lettuce. Mol. Nutr. Food Res. 2008;52:614–623. doi: 10.1002/mnfr.200700158. PubMed DOI
Yoder S., Argueta C., Holtzman A., Aronson T., Berlin O.G., Tomasek P., Glover N., Froman S., Stelma G., Jr. PCR comparison of Mycobacterium avium isolates obtained from patients and foods. Appl. Environ. Microbiol. 1999;65:2650–2653. doi: 10.1128/AEM.65.6.2650-2653.1999. PubMed DOI PMC
Cerna-Cortes J.F., Leon-Montes N., Cortes-Cueto A.L., Salas-Rangel L.P., Helguera-Repetto A.C., Lopez-Hernandez D., Rivera-Gutierrez S., Fernandez-Rendon E., Gonzalez-y-Merchand J.A. Microbiological quality of ready-to-eat vegetables collected in Mexico City: Occurrence of aerobic-mesophilic bacteria, fecal coliforms, and potentially pathogenic nontuberculous mycobacteria. Biomed. Res. Int. 2015;2015:789508. doi: 10.1155/2015/789508. PubMed DOI PMC
Lund P.A., De Biase D., Liran O., Scheler O., Mira N.P., Cetecioglu Z., Fernández E.N., Bover-Cid S., Hall R., Sauer M., et al. Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Front. Microbiol. 2020;11:556140. doi: 10.3389/fmicb.2020.556140. PubMed DOI PMC
Vincent A.T., Nyongesa S., Morneau I., Reed M.B., Tocheva E.I., Veyrier F.J. The mycobacterial cell envelope: A relict from the past or the result of recent evolution? Front. Microbiol. 2018;9:2341. doi: 10.3389/fmicb.2018.02341. PubMed DOI PMC
Niederweis M. Mycobacterial porins—New channel proteins in unique outer membranes. Mol. Microbiol. 2003;49:1167–1177. doi: 10.1046/j.1365-2958.2003.03662.x. PubMed DOI
Pule C.M., Sampson S.L., Warren R.M., Black P.A., van Helden P.D., Victor T.C., Louw G.E. Efflux pump inhibitors: Targeting mycobacterial efflux systems to enhance TB therapy. J. Antimicrob. Chemother. 2016;71:17–26. doi: 10.1093/jac/dkv316. PubMed DOI
Forrellad M.A., Klepp L.I., Gioffre A., Sabio y Garcia J., Morbidoni H.R., de la Paz Santangelo M., Cataldi A.A., Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4:3–66. doi: 10.4161/viru.22329. PubMed DOI PMC
Rao M., Streur T.L., Aldwell F.E., Cook G.M. Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. Pt 4Microbiology. 2001;147:1017–1024. doi: 10.1099/00221287-147-4-1017. PubMed DOI
Portaels F., Pattyn S.R. Growth of mycobacteria in relation to the pH of the medium. Ann. Microbiol. 1982;133:213–221. PubMed
Kyselkova M., Chronakova A., Volna L., Nemec J., Ulmann V., Scharfen J., Elhottova D. Tetracycline resistance and presence of tetracycline resistance determinants tet(V) and tap in rapidly growing mycobacteria from agricultural soils and clinical isolates. Microbes Environ. 2012;27:413–422. doi: 10.1264/jsme2.ME12028. PubMed DOI PMC
Li Y.J., Danelishvili L., Wagner D., Petrofsky M., Bermudez L.E. Identification of virulence determinants of Mycobacterium avium that impact on the ability to resist host killing mechanisms. Pt 1J. Med. Microbiol. 2010;59:8–16. doi: 10.1099/jmm.0.012864-0. PubMed DOI PMC
Parsons L.M., Jankowski C.S., Derbyshire K.M. Conjugal transfer of chromosomal DNA in Mycobacterium smegmatis. Mol. Microbiol. 1998;28:571–582. doi: 10.1046/j.1365-2958.1998.00818.x. PubMed DOI
Hatfull G.F. Molecular genetics of mycobacteriophages. Microbiol. Spectr. 2014;2:1–36. doi: 10.1128/microbiolspec.MGM2-0032-2013. PubMed DOI PMC
Iivanainen E., Martikainen P.J., Vaananen P., Katila M.L. Environmental factors affecting the occurrence of mycobacteria in brook sediments. J. Appl. Microbiol. 1999;86:673–681. doi: 10.1046/j.1365-2672.1999.00711.x. PubMed DOI
Rinaldi P.S., Nisa’Akromah Z., Ramadhan H., Husna S., Syamsudin D.L., Panggabean P.B., Murdianti R.A., Fatahillah M.H., Perala I., Rizqia E.K., et al. Physical and chemical analysis of land in forest peat swamp in Resort Pondok soar, Tanjung Puting National Park, Central Kalimantan. IOP Conf. Series: Earth Environ. Sci. 2019;394:012037. doi: 10.1088/1755-1315/394/1/012037. DOI
Wong E.A., Shin G.A. Removal of Mycobacterium avium subspecies hominissuis (MAH) from drinking water by coagulation, flocculation and sedimentation processes. Lett. Appl. Microbiol. 2015;60:273–278. doi: 10.1111/lam.12368. PubMed DOI
Bodmer T., Miltner E., Bermudez L.E. Mycobacterium avium resists exposure to the acidic conditions of the stomach. FEMS Microbiol. Lett. 2000;182:45–49. doi: 10.1111/j.1574-6968.2000.tb08871.x. PubMed DOI
Ulmann V., Modra H., Babak V., Weston R.T., Pavlik I. Recovery of mycobacteria from heavily contaminated environmental matrices. Microorganism. 2021;9:2178. doi: 10.3390/microorganisms9102178. PubMed DOI PMC
Pavlik I., Ulmann V., Modra H., Gersl M., Rantova B., Zukal J., Zukalova K., Konecny O., Kana V., Kubalek P., et al. Nontuberculous mycobacteria prevalence in bats’ guano from caves and attics of buildings studied by culture and qPCR examinations. Microorganisms. 2021;9:2236. doi: 10.3390/microorganisms9112236. PubMed DOI PMC
Santucci P., Johansen M.D., Point V., Poncin I., Viljoen A., Cavalier J.F., Kremer L., Canaan S. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Sci. Rep. 2019;9:8667. doi: 10.1038/s41598-019-45164-5. PubMed DOI PMC
DePas W.H., Bergkessel M., Newman D.K. Aggregation of nontuberculous mycobacteria is regulated by carbon-nitrogen balance. mBio. 2019;10:e01715-19. doi: 10.1128/mBio.01715-19. PubMed DOI PMC
Ghosh J., Larsson P., Singh B., Pettersson B.M., Islam N.M., Sarkar S.N., Dasgupta S., Kirsebom L.A. Sporulation in mycobacteria. Proc. Natl. Acad. Sci. USA. 2009;106:10781–10786. doi: 10.1073/pnas.0904104106. PubMed DOI PMC
Torvinen E., Lehtola M.J., Martikainen P.J., Miettinen I.T. Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature. Appl. Environ. Microbiol. 2007;73:6201–6207. doi: 10.1128/AEM.00828-07. PubMed DOI PMC
Carson L.A., Petersen N.J., Favero M.S., Aguero S.M. Growth characteristics of atypical mycobacteria in water and their comparative resistance to disinfectants. Appl. Environ. Microbiol. 1978;36:839–846. doi: 10.1128/aem.36.6.839-846.1978. PubMed DOI PMC
Amon J., Titgemeyer F., Burkovski A. A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J. Mol. Microbiol. Biotechnol. 2009;17:20–29. doi: 10.1159/000159195. PubMed DOI
Kumar S., Matange N., Umapathy S., Visweswariah S.S. Linking carbon metabolism to carotenoid production in mycobacteria using Raman spectroscopy. FEMS Microbiol. Lett. 2015;362:1–6. doi: 10.1093/femsle/fnu048. PubMed DOI
Priestman M., Thomas P., Robertson B.D., Shahrezaei V. Mycobacteria modify their cell size control under sub-optimal carbon sources. Front. Cell. Dev. Biol. 2017;5:64. doi: 10.3389/fcell.2017.00064. PubMed DOI PMC
Kazda J., Falkinham J. Biological role of mycobacteria in the environment. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 313–329. Chapter 8.
Liu Y., Deng B., Du J., Zhang G., Hou L. Nutrient burial and environmental changes in the Yangtze Delta in response to recent river basin human activities. Environ. Pollut. 2019;249:225–235. doi: 10.1016/j.envpol.2019.03.030. PubMed DOI
Ogbeide O., Tongo I., Ezemonye L. Risk assessment of agricultural pesticides in water, sediment, and fish from Owan River, Edo State, Nigeria. Environ. Monit. Assess. 2015;187:654. doi: 10.1007/s10661-015-4840-8. PubMed DOI
Pasquier V., Sansjofre P., Lebeau O., Liorzou C., Rabineau M. Acid digestion on river influenced shelf sediment organic matter: Carbon and nitrogen contents and isotopic ratios. Rapid Commun. Mass Spectrom. 2018;32:86–92. doi: 10.1002/rcm.8014. PubMed DOI
Yu Z., Wang X., Han G., Liu X., Zhang E. Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary. Sci. Rep. 2018;8:10825. doi: 10.1038/s41598-018-29200-4. PubMed DOI PMC
Norton C.D., LeChevallier M.W., Falkinham J.O., 3rd Survival of Mycobacterium avium in a model distribution system. Water Res. 2004;38:1457–1466. doi: 10.1016/j.watres.2003.07.008. PubMed DOI
Williams K., Pruden A., Falkinham J.O., Edwards M., Williams K., Pruden A., Falkinham J.O., III., Edwards M. Relationship between organic carbon and opportunistic pathogens in simulated glass water heaters. Pathogens. 2015;4:355–372. doi: 10.3390/pathogens4020355. PubMed DOI PMC
De Voss J.J., Rutter K., Schroeder B.G., Barry C.E., 3rd Iron acquisition and metabolism by mycobacteria. J. Bacteriol. 1999;181:4443–4451. doi: 10.1128/JB.181.15.4443-4451.1999. PubMed DOI PMC
Neyrolles O., Wolschendorf F., Mitra A., Niederweis M. Mycobacteria, metals, and the macrophage. Immunol. Rev. 2015;264:249–263. doi: 10.1111/imr.12265. PubMed DOI PMC
European Union Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. Off. J. Eur. Communities. 2000;L262:21–45.
Sing A., editor. Zoonoses—Infections Affecting Humans and Animals: Focus on Public Health Aspects. Springer; Heidelberg, Germany: Dordrecht, The Netherlands: London, UK: New York, NY, USA: 2015. 1143p
Ortel S. Significance of new results in the research on human listeriosis. Zentralbl. Gynakol. 1983;105:1295–1306. (In German) PubMed
Schaefer H.E. Introduction into pathology of ocular zoonoses. Int. J. Med. Sci. 2009;6:120–122. doi: 10.7150/ijms.6.120. PubMed DOI PMC
White D., editor. George Lucas (A & E Biography) Lerner Pub Group; Minneapolis, MN, USA: 1999. 128p
A Rare Case of Osteomyelitis of an Ankle Caused by Mycobacterium chelonae
Nontuberculous Mycobacteria: Ecology and Impact on Animal and Human Health