Nontuberculous Mycobacteria as Sapronoses: A Review

. 2022 Jul 03 ; 10 (7) : . [epub] 20220703

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35889064

Grantová podpora
NU20-09-00114 Czech Health Research Council

Odkazy

PubMed 35889064
PubMed Central PMC9315685
DOI 10.3390/microorganisms10071345
PII: microorganisms10071345
Knihovny.cz E-zdroje

Mycobacteria are a unique group of microorganisms. They are characterised by exceptional adaptability and durability. They are capable of colonisation and survival even in very unfavourable conditions. In addition to the well-known obligate human pathogens, Mycobacterium tuberculosis and M. leprae, more than 200 other species have been described. Most of them form a natural part of the microflora of the external environment and thrive in aquatic and soil environments especially. For many of the mycobacterial species associated with human disease, their natural source has not yet been identified. From an ecological point of view, mycobacteria are saprophytes, and their application in human and animal diseases is opportunistic. Most cases of human disease from saprophytic mycobacteria occur in immunocompromised individuals. This adaptability and resilience to environmental pressures makes treatment of mycobacterial diseases (most often sapronoses and less often zoonoses) and permanent eradication of mycobacteria from the environment very difficult. Saprophytic mycobacterial diseases (sapronoses) are chronic and recurrent due to the fact of repeated endogenous or exogenous re-exposure. Therefore, knowledge regarding their occurrence in soil and dust would aid in the prevention of saprophytic mycobacterioses. In conjunction, their presence and ecological significance in the environment can be revealed.

Zobrazit více v PubMed

Iivanainen E. Isolation of mycobacteria from acidic forest soil samples–comparison of culture methods. J. Appl. Bacteriol. 1995;78:663–668. doi: 10.1111/j.1365-2672.1995.tb03113.x. PubMed DOI

Iivanainen E.K., Martikainen P.J., Raisanen M.L., Katila M.L. Mycobacteria in boreal coniferous forest soils. FEMS Microbiol. Ecol. 1997;23:325–332. doi: 10.1016/S0168-6496(97)00040-8. DOI

Kendall B.A., Winthrop K.L. Update on the epidemiology of pulmonary nontuberculous mycobacterial infections. Semin. Respir. Crit. Care Med. 2013;34:87–94. doi: 10.1055/s-0033-1333567. PubMed DOI

Yu J.R., Heo S.T., Lee K.H., Kim J., Sung J.K., Kim Y.R., Kim J.W. Skin and soft tissue infection due to rapidly growing mycobacteria: Case series and literature review. Infect. Chemother. 2013;45:85–93. doi: 10.3947/ic.2013.45.1.85. PubMed DOI PMC

Falkinham J.O., 3rd Environmental sources of nontuberculous mycobacteria. Clin. Chest Med. 2015;36:35–41. doi: 10.1016/j.ccm.2014.10.003. PubMed DOI

Hamada S., Ito Y., Hirai T., Murase K., Tsuji T., Fujita K., Mio T., Maekawa K., Fujii T., Ono S., et al. Impact of industrial structure and soil exposure on the regional variations in pulmonary nontuberculous mycobacterial disease prevalence. Int. J. Mycobacteriol. 2016;5:170–176. doi: 10.1016/j.ijmyco.2016.02.006. PubMed DOI

Hamilton K.A., Weir M.H., Haas C.N. Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology. Water Res. 2017;109:310–326. doi: 10.1016/j.watres.2016.11.053. PubMed DOI

Nishiuchi Y., Iwamoto T., Maruyama F. Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium complex. Front. Med. 2017;4:27. doi: 10.3389/fmed.2017.00027. PubMed DOI PMC

Claeys T.A., Robinson R.T. The many lives of nontuberculous mycobacteria. J. Bacteriol. 2018;200:e00739-17. doi: 10.1128/JB.00739-17. PubMed DOI PMC

Shah J.A., Lindestam Arlehamn C.S., Horne D.J., Sette A., Hawn T.R. Nontuberculous mycobacteria and heterologous immunity to tuberculosis. J. Infect. Dis. 2019;220:1091–1098. doi: 10.1093/infdis/jiz285. PubMed DOI PMC

Parikh A., Vinnard C., Fahrenfeld N., Davidow A.L., Patrawalla A., Lardizabal A., Gow A., Panettieri R., Gennaro M. Revisiting John Snow to meet the challenge of nontuberculous mycobacterial lung disease. Int. J. Environ. Res. Public Health. 2019;16:4250. doi: 10.3390/ijerph16214250. PubMed DOI PMC

Shin J.I., Shin S.J., Shin M.K. Differential genotyping of Mycobacterium avium complex and its implications in clinical and environmental epidemiology. Microorganisms. 2020;8:98. doi: 10.3390/microorganisms8010098. PubMed DOI PMC

Munjal S., Munjal S., Gao J., Venketaraman V. Exploring potential COPD immunosuppression pathways causing increased susceptibility for MAC infections among COPD patients. Clin. Pract. 2021;11:77. doi: 10.3390/clinpract11030077. PubMed DOI PMC

Mortaz E., Moloudizargari M., Varahram M., Movassaghi M., Garssen J., Kazempour Dizagie M., Mirsaeidi M., Adcock I.M. What immunological defects predispose to non-tuberculosis mycobacterial infections? Iran J. Allergy Asthma Immunol. 2018;17:100–109. PubMed

Pontiroli A., Khera T.T., Oakley B.B., Mason S., Dowd S.E., Travis E.R., Erenso G., Aseffa A., Courtenay O., Wellington E.M. Prospecting environmental mycobacteria: Combined molecular approaches reveal unprecedented diversity. PLoS ONE. 2013;8:e68648. doi: 10.1371/journal.pone.0068648. PubMed DOI PMC

McClure R., Naylor D., Farris Y., Davison M., Fansler S.J., Hofmockel K.S., Jansson J.K. Development and analysis of a stable, reduced complexity model soil microbiome. Front. Microbiol. 2020;11:1987. doi: 10.3389/fmicb.2020.01987. PubMed DOI PMC

Bartelme R.P., Custer J.M., Dupont C.L., Espinoza J.L., Torralba M., Khalili B., Carini P. Influence of substrate concentration on the culturability of heterotrophic soil microbes isolated by High-Throughput Dilution-to-Extinction cultivation. mSphere. 2020;5:e00024-20. doi: 10.1128/mSphere.00024-20. PubMed DOI PMC

Terskikh V.I. Diseases of humans and animals caused by microbes able to reproduce in an abiotic environment that represents their living habitat. Zh. Mikrobiol. Epidemiol. Immunobiol. 1958;8:118–122. (In Russian) PubMed

Litvin V.Y., Pushkareva V.I. The possible mechanism in the formation of epidemic variants of the causative agents of sapronoses in the soil or water. Zh. Mikrobiol. Epidemiol. Immunobiol. 1994;5:89–95. (In Russian) PubMed

Buzolyova L.S., Somov G.P. Autotrophic assimilation of CO2 and C1-compounds by pathogenic bacteria. Biochemistry. 1999;64:1146–1149. PubMed

Iurova M.A., Pushkareva V.I., Poliakov V.I. Presence of Yersinia enterocolitica in conditions of agro complex. Zh. Mikrobiol. Epidemiol. Immunobiol. 2013;3:31–38. (In Russian) PubMed

Kuris A.M., Lafferty K.D., Sokolow S.H. Sapronosis: A distinctive type of infectious agent. Trends Parasitol. 2014;30:386–393. doi: 10.1016/j.pt.2014.06.006. PubMed DOI

Ghosh S.K., Mehta P.K., Patel J.G., Kashyap S.K., Chatterjee S.K. Studies on saprozoonosis. I. A survey on Aspergillus species with special reference to occupational habits. J. Environ. Sci. Health B. 1979;14:97–117. doi: 10.1080/03601237909372116. PubMed DOI

Kakoma I., Ristic M. Human-Bovine Ecosystems: Reflections on Zoonoses in the Tropics. In: Ristic M., McIntyre W.I.M., editors. Diseases of Cattle in the Tropics. Current Topics in Veterinary Medicine and Animal Science. Volume 6. Springer; Dordrecht, Germany: 1981. pp. 39–51.

Jaffry K.T., Ali S., Rasool A., Raza A., Gill Z.J. Zoonoses. Int. J. Agric. Biol. 2009;11:217–220.

Pavlik I., Ayele W.Y., Parmova I., Melicharek I., Hanzlikova M., Kormendy B., Nagy G., Cvetnic Z., Katalinic-Jankovic V., Ocepek M., et al. Mycobacterium tuberculosis in animal and human populations in six Central European countries during 1990–1999. Vet. Med-Czech. 2003;48:83–89. doi: 10.17221/5754-VETMED. DOI

Pavlik I., Trcka I., Parmova I., Svobodova J., Melicharek I., Nagy G., Cvetnic Z., Ocepek M., Pate M., Lipiec M. Detection of bovine and human tuberculosis in cattle and other animals in six Central European countries during the years 2000–2004. Vet. Med-Czech. 2005;50:291–299. doi: 10.17221/5626-VETMED. DOI

Moravkova M., Slany M., Trcka I., Havelkova M., Svobodova J., Skoric M., Heinigeova B., Pavlik I. Human-to-human and human-to-dog Mycobacterium tuberculosis transmission studied by IS6110 RFLP analysis: A case report. Vet. Med-Czech. 2011;56:314–317. doi: 10.17221/1547-VETMED. DOI

Karimova T.Y., Neronov V.M., Popov V.P. Development of views on natural focality of plague. Biol. Bull. 2010;37:725–732. doi: 10.1134/S1062359010070083. DOI

Bultman M.W., Fischer S.F., Pappagianis F.S. The ecology of soil-borne human pathogens. In: Selenius O., editor. Essentials of Medical Geology: Impacts of the Natural Environment on Public Health. Elsevier Academic Press; Cambridge, MA, USA: 2005. pp. 481–497. Chapter 19.

Selinus O., editor. Essentials of Medical Geology. 2nd ed. Springer; Heidelberg, Germany: Dordrecht, The Netherlands: London, UK: New York, NY, USA: 2013. 805p

Jeffery S., Van der Putten W.H. Soil Borne Human Diseases. Publications Office of the European Union; Luxembourg: 2011. 56p

Kazda J. The Ecology of Mycobacteria. Kluwer Academic Publishers; Dordrecht, The Netherlands: Boston, MA, USA: London, UK: 2000. 72p

Alvarez E., Tavel E. Recherches sur le bacille de Lustgarten. Arch. Physiol. Normal Pathol. 1885;6:303–321.

Lehmann K.B., Neumann R. Lehmann’s Medizin Handatlanten. X. Atlas und GrundriB der Bakteriologie und Lehrbuch der Speziellen Bakteriologischen Diagnostik. 2nd ed. München, Germany: 1899.

Kazda J. The chronology of mycobacteria and the development of mycobacterial ecology. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 1–11. Chapter 1.

Steinert M., Birkness K., White E., Fields B., Quinn F. Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl. Environ. Microbiol. 1998;64:2256–2261. doi: 10.1128/AEM.64.6.2256-2261.1998. PubMed DOI PMC

Ashbolt N.J. Environmental (saprozoic) pathogens of engineered water systems: Understanding their ecology for risk assessment and management. Pathogens. 2015;4:390–405. doi: 10.3390/pathogens4020390. PubMed DOI PMC

Kazda J., Pavlik I. The ecology of obligate pathogens. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 13–19. Chapter 2.

LPSN: List of Prokaryotic Names with Standing in Nomenclature. [(accessed on 10 October 2021)]. Available online: https://lpsn.dsmz.de/

Pavlik I., Kazda J., Falkinham J. The ecology of potentially pathogenic mycobacteria. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 21–79. Chapter 3.

Hubalek Z. Emerging human infectious diseases: Anthroponoses, zoonoses, and sapronoses. Emerg. Infect. Dis. 2003;9:403–404. doi: 10.3201/eid0903.020208. PubMed DOI PMC

Hubalek Z., Rudolf I., editors. Microbial Zoonoses and Sapronoses. Springer; Heidelberg, Germany: Dordrecht, The Netherlands: London, UK: New York, NY, USA: 2011. 457p

Allen A.R., Ford T., Skuce R.A. Does Mycobacterium tuberculosis var. bovis survival in the environment confound bovine tuberculosis control and eradication? A literature review. Vet. Med. Int. 2021;2021:8812898. PubMed PMC

Wong E.B. It is time to focus on asymptomatic tuberculosis. Clin. Infect. Dis. 2021;15:e1044–e1046. doi: 10.1093/cid/ciaa1827. PubMed DOI PMC

Honda J.R., Virdi R., Chan E.D. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. Front. Microbiol. 2018;9:2029. doi: 10.3389/fmicb.2018.02029. PubMed DOI PMC

Varghese B., Al-Hajoj S. A global update on rare non-tuberculous mycobacteria in humans: Epidemiology and emergence. Int. J. Tuberc. Lung Dis. 2020;24:214–223. doi: 10.5588/ijtld.19.0194. PubMed DOI

Dolezalova K., Gopfertova D. Ten years’ experience with the discontinuation of the Bacillus Calmette-Guérin vaccination in the Czech Republic. Int. J. Mycobacteriol. 2021;10:193–198. PubMed

Pavlik I., Falkinham J., Kazda J. Transmission of mycobacteria from the environment to susceptible hosts. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 283–312. Chapter 7.

Zinsstag J., Borna M., Pavlik I. Mycobacterioses. In: Palmer S.R., Soulsby L., Torgerson P.R., Brown D.W.G., editors. Oxford Textbook of Zoonoses. Biology, Clinical Practice and Public Health Control. 2nd ed. Oxford University Press; Oxford, UK: 2011. pp. 128–135. Chapter 15.

Al-Anazi K.A., Al-Jasser A.M., Al-Anazi W.K. Infections caused by non-tuberculous mycobacteria in recipients of hematopoietic stem cell transplantation. Front. Oncol. 2014;10:311. doi: 10.3389/fonc.2014.00311. PubMed DOI PMC

Mara D., Horan N. Handbook of Water and Wastewater Microbiology. Academic Press; London, UK: 2003. 610p

Pedley S., Bartram J., Rees G., Dufou A., Cotruvo J.A. Pathogenic Mycobacteria in Water. WHO; Geneva, Switzerland: TJ International (Ltd.); Cornwall, UK: 2004. 237p

Whiley H., Keegan A., Giglio S., Bentham R. Mycobacterium avium complex-the role of potable water in disease transmission. J. Appl. Microbiol. 2012;113:223–232. doi: 10.1111/j.1365-2672.2012.05298.x. PubMed DOI

Falkinham J.O., 3rd Living with Legionella and other waterborne pathogens. Microorganisms. 2020;18:2026. doi: 10.3390/microorganisms8122026. PubMed DOI PMC

Ijaz M.K., Zargar B., Wright K.E., Rubino J.R., Sattar S.A. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies. Am. J. Infect. Control. 2016;44((Suppl. S9)):S109–S120. doi: 10.1016/j.ajic.2016.06.008. PubMed DOI PMC

Gopalaswamy R., Shanmugam S., Mondal R., Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections—A comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci. 2020;27:74. doi: 10.1186/s12929-020-00667-6. PubMed DOI PMC

Wang H., Bedard E., Prevost M., Camper A.K., Hill V.R., Pruden A. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. Water Res. 2017;117:68–86. doi: 10.1016/j.watres.2017.03.046. PubMed DOI PMC

Loret J.F., Dumoutier N. Non-tuberculous mycobacteria in drinking water systems: A review of prevalence data and control means. Int. J. Hyg. Environ. Health. 2019;222:628–634. doi: 10.1016/j.ijheh.2019.01.002. PubMed DOI

Williams M.M., Armbruster C.R., Arduino M.J. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: A review. Biofouling. 2013;29:147–162. doi: 10.1080/08927014.2012.757308. PubMed DOI PMC

Juzga-Corrales D.C., Moliner-Calderon E., Coll-Figa P., Leon-Vintro X. Mycobacterium malmoense parotid gland infection. Enferm. Infect. Microbiol. Clin. 2019;37:545–547. doi: 10.1016/j.eimc.2019.01.009. (In English and Spanish) PubMed DOI

Scanlon M.M., Gordon J.L., McCoy W.F., Cain M.F. Water management for construction: Evidence for risk characterization in community and healthcare settings: A systematic review. Int. J. Environ. Res. Public Health. 2020;17:2168. doi: 10.3390/ijerph17062168. PubMed DOI PMC

Maalouly C., Devresse A., Martin A., Rodriguez-Villalobos H., Kanaan N., Belkhir L. Coinfection of Mycobacterium malmoense and Mycobacterium chimaera in a kidney transplant recipient: A case report and review of the literature. Transpl. Infect. Dis. 2020;22:e13241. doi: 10.1111/tid.13241. PubMed DOI

Piyumal Samaranayake W.A.M., Kesson A.M., Karpelowsky J.S., Outhred A.C., Marais B.J. Port-site infection due to nontuberculous mycobacteria following laparoscopic surgery. Int. J. Mycobacteriol. 2020;9:231–238. doi: 10.4103/ijmy.ijmy_32_20. PubMed DOI

Arfaatabar M., Karami P., Khaledi A. An update on prevalence of slow-growing mycobacteria and rapid-growing mycobacteria retrieved from hospital water sources in Iran—A systematic review. Germs. 2021;11:97–104. doi: 10.18683/germs.2021.1245. PubMed DOI PMC

Habermann S., Ferran E., Hatcher J., Lyall H., De La Fuente J., Whittaker E. Outbreak of non-tuberculous mycobacteria in a paediatric bone marrow transplant unit associated with water contamination of needle-free connectors and literature review. Bone Marrow Transpl. 2021;56:2305–2308. doi: 10.1038/s41409-021-01239-4. PubMed DOI PMC

Shuval H.I. Effects of wastewater irrigation of pastures on the health of farm animals and humans. Rev. Sci. Technol. 1991;10:847–866. doi: 10.20506/rst.10.3.564. PubMed DOI

Pachepsky Y., Shelton D.R., McLain J.E.T., Patel J., Mandrell R.E. Irrigation waters as a source of pathogenic microorganisms in produce: A review. Adv. Agron. 2011;113:73–138.

Richards J.P., Ojha A.K. Mycobacterial biofilms. Microbiol. Spectr. 2014;2 doi: 10.1128/microbiolspec.MGM2-0004-2013. PubMed DOI

Ojha A.K., Jacobs W.R., Jr., Hatfull G.F. Genetic dissection of mycobacterial biofilms. Methods. Mol. Biol. 2015;1285:215–226. PubMed PMC

Esteban J., Garcia-Coca M. Mycobacterium biofilms. Front. Microbiol. 2018;8:2651. doi: 10.3389/fmicb.2017.02651. PubMed DOI PMC

Bittner M.J., Preheim L.C. Other slow-growing nontuberculous mycobacteria. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.TNMI7-0012-2016. PubMed DOI

Lee J.C., Whang K.S. Mycobacterium aquiterrae sp. nov., a rapidly growing bacterium isolated from groundwater. Int. J. Syst. Evol. Microbiol. 2017;67:4104–4110. PubMed

Cydzik-Kwiatkowska A., Zielinska M. Bacterial communities in full-scale wastewater treatment systems. World J. Microbiol. Biotechnol. 2016;32:66. doi: 10.1007/s11274-016-2012-9. PubMed DOI PMC

Chen G.Q., Wu Y.H., Wang Y.H., Chen Z., Tong X., Bai Y., Luo L.W., Xu C., Hu H.Y. Effects of microbial inactivation approaches on quantity and properties of extracellular polymeric substances in the process of wastewater treatment and reclamation: A review. J. Hazard. Mater. 2021;413:125283. doi: 10.1016/j.jhazmat.2021.125283. PubMed DOI

Falkinham J. Physiological ecology of environmental saprophytic and potentially pathogenic mycobacteria. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 81–87. Chapter 4.

Beerwerth W. Mycobacterial soil flora in the course of the seasons. Prax. Pneumol. 1971;25:661–668. (In German) PubMed

Pavlik I., Falkinham J., Kazda J. Environments providing favourable conditions for the multiplication and transmission of mycobacteria. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 89–197. Chapter 5.

Beerwerth W., Kessel U. Mycobacteria in the environment of man and animal. Zentralbl. Bakteriol. 1976;235:177–183. (In German) PubMed

Beerwerth W., Schurmann J. Contribution to the ecology of mycobacteria. Zentralbl. Bakteriol. 1969;211:58–69. (In German) PubMed

Kaevska M., Hruska K. Mycobacteria in water, feedstocks and food: Analysis of publications. Vet. Med-Czech. 2010;55:571–580. doi: 10.17221/2946-VETMED. DOI

Pereira A.C., Ramos B., Reis A.C., Cunha M.V. Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological niches. Microorganisms. 2020;8:1380. doi: 10.3390/microorganisms8091380. PubMed DOI PMC

Falkinham J.O., III. Ecology of Nontuberculous Mycobacteria. Microorganisms. 2021;9:2262. doi: 10.3390/microorganisms9112262. PubMed DOI PMC

Kauker E., Rheinwald W. Studies on the occurrence of atypical mycobacteria, group 3 Runyon, in the bedding material (sawdust) and feed of swine in North Hesse. Berl. Munch. Tierarztl. Wochenschr. 1972;85:384–387. (In German) PubMed

Kaevska M., Lvoncik S., Slana I., Kulich P., Kralik P. Microscopy, culture, and quantitative real-time PCR examination confirm internalization of mycobacteria in plants. Appl. Environ. Microbiol. 2014;80:3888–3894. doi: 10.1128/AEM.00496-14. PubMed DOI PMC

Kaevska M., Lvoncik S., Lamka J., Pavlik I., Slana I. Spread of Mycobacterium avium subsp. paratuberculosis through soil and grass on a mouflon (Ovis aries) pasture. Curr. Microbiol. 2014;69:495–500. PubMed

Bouam A., Armstrong N., Levasseur A., Drancourt M. Mycobacterium terramassiliense, Mycobacterium rhizamassiliense and Mycobacterium numidiamassiliense sp. nov., three new Mycobacterium simiae complex species cultured from plant roots. Sci. Rep. 2018;8:9309. doi: 10.1038/s41598-018-27629-1. PubMed DOI PMC

Tran P.M., Dahl J.L. Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., isolated from the pitcher plant Sarracenia purpurea. Int. J. Syst. Evol. Microbiol. 2016;66:4480–4485. doi: 10.1099/ijsem.0.001377. PubMed DOI

Walsh C.M., Gebert M.J., Delgado-Baquerizo M., Maestre F.T., Fierer N. A global survey of mycobacterial diversity in soil. Appl. Environ. Microbiol. 2019;85:e01180-19. doi: 10.1128/AEM.01180-19. PubMed DOI PMC

Honda J.R., Hasan N.A., Davidson R.M., Williams M.D., Epperson L.E., Reynolds P.R., Smith T., Iakhiaeva E., Bankowski M.J., Wallace R.J., Jr., et al. Environmental nontuberculous mycobacteria in the Hawaiian Islands. PLoS Negl. Trop. Dis. 2016;10:e0005068. doi: 10.1371/journal.pntd.0005068. PubMed DOI PMC

Baker A.W., Lewis S.S., Alexander B.D., Chen L.F., Wallace R.J., Jr., Brown-Elliott B.A., Isaacs P.J., Pickett L.C., Patel C.B., Smith P.K., et al. Two-phase hospital-associated outbreak of Mycobacterium abscessus: Investigation and mitigation. Clin. Infect. Dis. 2017;64:902–911. doi: 10.1093/cid/ciw877. PubMed DOI PMC

Doyle R.M., Rubio M., Dixon G., Hartley J., Klein N., Coll P., Harris K.A. Cross-transmission is not the source of new Mycobacterium abscessus infections in a Multicenter Cohort of Cystic Fibrosis Patients. Clin. Infect. Dis. 2020;70:1855–1864. doi: 10.1093/cid/ciz526. PubMed DOI PMC

Vaerewijck M.J., Huys G., Palomino J.C., Swings J., Portaels F. Mycobacteria in drinking water distribution systems: Ecology and significance for human health. FEMS Microbiol. Rev. 2005;29:911–934. doi: 10.1016/j.femsre.2005.02.001. PubMed DOI

Quintás Viqueira A., Pérez Romero C., Toro Rueda C., Sánchez Calles A.M., Blázquez González J.A., Alejandre Leyva M. Mycobacterium chimaera in heater-cooler devices: An experience in a tertiary hospital in Spain. New Microbes New Infect. 2020;39:100757. doi: 10.1016/j.nmni.2020.100757. PubMed DOI PMC

Lange C., Böttger E.C., Cambau E., Griffith D.E., Guglielmetti L., van Ingen J., Knight S.L., Marras T.K., Olivier K.N., Santin M., et al. Consensus management recommendations for less common non-tuberculous mycobacterial pulmonary diseases. Lancet Infect. Dis. 2022;22:e178–e190. doi: 10.1016/S1473-3099(21)00586-7. PubMed DOI

Abrahams P.W. Involuntary soil ingestion and geophagia: A source and sink of mineral nutrients and potentially harmful elements to consumers of earth materials. Appl. Geochem. 2012;27:954–968. doi: 10.1016/j.apgeochem.2011.05.003. DOI

Wilson M.J. Clay mineralogical and related characteristics of geophagic materials. J. Chem. Ecol. 2003;29:1525–1547. doi: 10.1023/A:1024262411676. PubMed DOI

Karoui A., Karoui H. Pica in Tunisian children. Results of a survey performed in a polyclinic of the Tunisian social security national administration. Pediatrie. 1993;48:565–569. (In French) PubMed

Karoui A., Karoui H. Geophagia in Tunisian children—Results of a prospective-study in children day-care-center. Pediatrie. 1993;48:565–569. PubMed

Glickman L.T., Camara A.O., Glickmancand N., McCabe G.P. Nematode intestinal parasites of children in rural Guinea, Africa: Prevalence and relationship to geophagia. Int. J. Epidemiol. 1999;28:169–174. doi: 10.1093/ije/28.1.169. PubMed DOI

Njiru H., Elchalal U., Paltiel O. Geophagy during pregnancy in Africa: A literature review. Obstet. Gynecol. Surv. 2011;66:452–459. doi: 10.1097/OGX.0b013e318232a034. PubMed DOI

Kortei N.K., Koryo-Dabrah A., Akonor P.T., Manaphraim N.Y.B., Ayim-Akonor M., Boadi N.O., Essuman E.K., Tettey C. Potential health risk assessment of toxic metals contamination in clay eaten as pica (geophagia) among pregnant women of Ho in the Volta Region of Ghana. BMC Pregnancy Childbirth. 2020;20:160. doi: 10.1186/s12884-020-02857-4. PubMed DOI PMC

Abrahams P.W., Davies T.C., Solomon A.O., Trow A.J., Wragg J. Human geophagia, Calabash chalk and undongo: Mineral element nutritional implications. PLoS ONE. 2013;8:e53304. PubMed PMC

Abrahams P.W., Parsons J.A. Geophagy in the tropics: A literature review. Geogr. J. 1996;162:63–72. doi: 10.2307/3060216. DOI

Narh C.T., Dzamalala C.P., Mmbaga B.T., Menya D., Mlombe Y., Finch P., Nyakunga G., Schuz J., McCormack V. Geophagia and risk of squamous cell esophageal cancer in the African esophageal cancer corridor: Findings from the ESCCAPE multicountry case-control studies. Int. J. Cancer. 2021;149:1274–1283. doi: 10.1002/ijc.33688. PubMed DOI PMC

Vermeer D. A note on geophagy among the Afenmai and adjacent peoples of Bendel State, Nigeria. Afr. Notes. 1979;8:13–14.

Abrahams P.W., Follansbee M.H., Hunt A., Smith B., Wragg J. Iron nutrition and possible lead toxicity: An appraisal of geophagy undertaken by pregnant women of UK Asian communities. Appl. Geochem. 2006;21:98–108. doi: 10.1016/j.apgeochem.2005.09.015. DOI

Dean J.R., Deary M.E., Gbefa B.K., Scott W.C. Characterisation and analysis of persistent organic pollutants and major, minor and trace elements in Calabash chalk. Chemosphere. 2004;57:21–25. doi: 10.1016/j.chemosphere.2004.05.023. PubMed DOI

Felten M.K., Knoetze K. Mycobacteria in sputum and soil ingestion. Lancet. 1987;1:334–335. doi: 10.1016/S0140-6736(87)92069-1. PubMed DOI

Knezevich M. Geophagy as a therapeutic mediator of endoparasitism in a free-ranging group of rhesus macaques (Macaca mulatta) Am. J. Primatol. 1998;44:71–82. doi: 10.1002/(SICI)1098-2345(1998)44:1<71::AID-AJP6>3.0.CO;2-U. PubMed DOI

Mahaney W.C., Bezada M., Hancock R.G.V., Aufreiter S., Perez F.L. Geophagy of Holstein hybrid cattle in the northern Andes, Venezuela. Mt. Res. Dev. 1996;16:177–180. doi: 10.2307/3674011. DOI

Diamond J., Bishop K.D., Gilardi J.D. Geophagy in New Guinea birds. Ibis. 1999;141:181–193. doi: 10.1111/j.1474-919X.1999.tb07540.x. DOI

Gilardi J.D., Duffey S.S., Munn C.A., Tell L.A. Biochemical functions of geophagy in parrots: Detoxification of dietary toxins and cytoprotective effects. J. Chem. Ecol. 1999;25:897–922. doi: 10.1023/A:1020857120217. DOI

Trckova M., Matlova L., Dvorska L., Pavlik I. Kaolin, bentonite, and zeolites as feed supplements for animals: Health advantages and risks. Vet. Med-Czech. 2004;49:389–399. doi: 10.17221/5728-VETMED. DOI

Trckova M., Vondruskova H., Zraly Z., Alexa P., Hamrik J., Kummer V., Maskova J., Mrlik V., Krizova K., Slana I., et al. The effect of kaolin feeding on efficiency, health status and course of diarrhoeal infections caused by enterotoxigenic Escherichia coli strains in weaned piglets. Vet. Med-Czech. 2009;54:47–63. doi: 10.17221/5/2009-VETMED. DOI

Vondruskova H., Slamova R., Trckova M., Zraly Z., Pavlik I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Vet. Med-Czech. 2010;55:199–224. doi: 10.17221/2998-VETMED. DOI

Slamova R., Trckova M., Vondruskova H., Zraly Z., Pavlik I. Clay minerals in animal nutrition. Appl. Clay Sci. 2011;51:395–398. doi: 10.1016/j.clay.2011.01.005. DOI

Trckova M., Matlova L., Hudcova H., Faldyna M., Zraly Z., Dvorska L., Beran V., Pavlik I. Peat as a feed supplement for animals: A literature review. Vet. Med-Czech. 2005;50:361–377. doi: 10.17221/5635-VETMED. DOI

Pavlik I., Falkinham J. The occurrence of pathogenic and potentially pathogenic mycobacteria in animals and the role of the environment in the spread of infection. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 199–281. Chapter 6.

Pavlik I., Hruska K. Photographs. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 339–519. Chapter 10.

Matlova L., Dvorska L., Ayele W.Y., Bartos M., Amemori T., Pavlik I. Distribution of Mycobacterium avium complex isolates in tissue samples of pigs fed peat naturally contaminated with mycobacteria as a supplement. J. Clin. Microbiol. 2005;43:1261–1268. doi: 10.1128/JCM.43.3.1261-1268.2005. PubMed DOI PMC

Trckova M., Zraly Z., Matlova L., Beran V., Moravkova M., Svobodova J., Pavlik I. Effects of peat feeding on the performance and health status of fattening pigs and environmentally derived mycobacteria. Vet. Med-Czech. 2006;51:533–543. doi: 10.17221/5587-VETMED. DOI

Agdestein A., Johansen T.B., Polacek V., Lium B., Holstad G., Vidanovic D., Aleksic-Kovacevic S., Jorgensen A., Zultauskas J., Nilsen S.F., et al. Investigation of an outbreak of mycobacteriosis in pigs. BMC Vet. Res. 2011;7:63. doi: 10.1186/1746-6148-7-63. PubMed DOI PMC

Agdestein A., Olsen I., Jorgensen A., Djonne B., Johansen T.B. Novel insights into transmission routes of Mycobacterium avium in pigs and possible implications for human health. Vet. Res. 2014;45:46. doi: 10.1186/1297-9716-45-46. PubMed DOI PMC

Johansen T.B., Agdestein A., Lium B., Jorgensen A., Djonne B. Mycobacterium avium subsp. hominissuis infection in swine associated with peat used for bedding. Biomed. Res. Int. 2014;2014:189649. PubMed PMC

Wagner K.M., Schulz J., Kemper N. Examination of the hygienic status of selected organic enrichment materials used in pig farming with special emphasis on pathogenic bacteria. Porcine Health Manag. 2018;4:24. doi: 10.1186/s40813-018-0100-y. PubMed DOI PMC

Matlova L., Kaevska M., Moravkova M., Beran V., Shitaye J.E., Pavlik I. Mycobacteria in peat used as a supplement for pigs: Failure of different decontamination methods to eliminate the risk. Vet. Med-Czech. 2012;57:212–217. doi: 10.17221/5924-VETMED. DOI

Matlova L., Dvorska L., Bartos M., Docekal J., Trckova M., Pavlik I. Tuberculous lesions in pig lymph nodes caused by kaolin fed as supplement. Vet. Med-Czech. 2004;49:379–388. doi: 10.17221/5727-VETMED. DOI

Yu Z., Stewart G.R., Mohn W.W. Apparent contradiction: Psychrotolerant bacteria from hydrocarbon-contaminated arctic tundra soils that degrade diterpenoids synthesized by trees. Appl. Environ. Microbiol. 2000;66:5148–5154. doi: 10.1128/AEM.66.12.5148-5154.2000. PubMed DOI PMC

Ferrera-Rodriguez O., Greer C.W., Juck D., Consaul L.L., Martinez-Romero E., Whyte L.G. Hydrocarbon-degrading potential of microbial communities from Arctic plants. J. Appl. Microbiol. 2013;114:71–83. doi: 10.1111/jam.12020. PubMed DOI

Zhang G., Cao T., Ying J., Yang Y., Ma L. Diversity and novelty of Actinobacteria in Arctic marine sediments. Antonie Van Leeuwenhoek. 2014;105:743–754. doi: 10.1007/s10482-014-0130-7. PubMed DOI

Muangchinda C., Chavanich S., Viyakarn V., Watanabe K., Imura S., Vangnai A.S., Pinyakong O. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ. Sci. Pollut. Res. Int. 2015;22:4725–4735. doi: 10.1007/s11356-014-3721-y. PubMed DOI

Haas B., Soto K.J., Day D.S., Roy A.C., Gagnon M.C., Alt J.R., Labrie P. Mycobacterium hassiacum: A thermophilic Mycobacterium species to demonstrate thermal disinfection of medical devices. BMC Res. Notes. 2020;13:140. doi: 10.1186/s13104-020-04978-7. PubMed DOI PMC

Ermolenko Z.M., Kholodenko V.P., Chugunov V.A., Zhirkova N.A., Rasulova G.E. A mycobacterial strain isolated from the oil of the Ukhtinskoe oil field: Identification and degradative properties. Microbiology. 1997;66:542–545.

George K.L., Parker B.C., Gruft H., Falkinham J.O., 3rd Epidemiology of infection by nontuberculous mycobacteria. II. Growth and survival in natural waters. Am. Rev. Respir. Dis. 1980;122:89–94. PubMed

Clark H.F., Shepard C.C. Effect of environmental temperatures on infection with Mycobacterium marinum (balnei) of mice and a number of poikilothermic species. J. Bacteriol. 1963;86:1057–1069. doi: 10.1128/jb.86.5.1057-1069.1963. PubMed DOI PMC

Kim T.H., Kubica G.P. Long-term preservation and storage of mycobacteria. Appl. Microbiol. 1972;24:311–317. doi: 10.1128/am.24.3.311-317.1972. PubMed DOI PMC

Shinu P., AshokKumar Singh V., Nair A., Farooq R., Ishaq S. Long-term storage at −80 °C: Effect on rate of recovery of Mycobacterium tuberculosis from direct acid-fast bacilli smear-positive sputum samples. J. Clin. Lab. Anal. 2016;30:567–576. doi: 10.1002/jcla.21904. PubMed DOI PMC

Pennings L.J., Zweijpfenning S., Ruth M.M., Wattenberg M., Boeree M.J., Hoefsloot W., van Ingen J. Mycobacterium avium complex bacteria remain viable in sputum during storage and refrigeration. Diagn. Microbiol. Infect. Dis. 2018;92:309–310. doi: 10.1016/j.diagmicrobio.2018.06.017. PubMed DOI

Barbier E., Rochelet M., Gal L., Boschiroli M.L., Hartmann A. Impact of temperature and soil type on Mycobacterium bovis survival in the environment. PLoS ONE. 2017;12:e0176315. doi: 10.1371/journal.pone.0176315. PubMed DOI PMC

Santos R., de Carvalho C.C., Stevenson A., Grant I.R., Hallsworth J.E. Extraordinary solute-stress tolerance contributes to the environmental tenacity of mycobacteria. Environ. Microbiol. Rep. 2015;7:746–764. doi: 10.1111/1758-2229.12306. PubMed DOI

Thorel M.F., Falkinham J.O., 3rd, Moreau R.G. Environmental mycobacteria from alpine and subalpine habitats. FEMS Microbiol. Ecol. 2004;49:343–347. doi: 10.1016/j.femsec.2004.04.016. PubMed DOI

Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: The new mycobacteria of the 1990s. Clin. Microbiol. Rev. 2003;16:319–354. doi: 10.1128/CMR.16.2.319-354.2003. PubMed DOI PMC

Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin. Microbiol. Rev. 2014;27:727–752. doi: 10.1128/CMR.00035-14. PubMed DOI PMC

Pavlik I., Svastova P., Bartl J., Dvorska L., Rychlik I. Relationship between IS901 in the Mycobacterium avium complex strains isolated from birds, animals, humans and environment and virulence for poultry. Clin. Diag. Lab. Immunol. 2000;7:212–217. doi: 10.1128/CDLI.7.2.212-217.2000. PubMed DOI PMC

Schwabacher H. A strain of Mycobacterium isolated from skin lesions of a cold-blooded animal, Xenopus laevis, and its relation to atypical acid-fast bacilli occurring in man. J. Hyg. 1959;57:57–67. doi: 10.1017/S0022172400019896. PubMed DOI PMC

Cook G.M., Berney M., Gebhard S., Heinemann M., Cox R.A., Danilchanka O., Niederweis M. Physiology of mycobacteria. Adv. Microb. Physiol. 2009;55:81–182. discussion 318–319. PubMed PMC

Archuleta R.J., Mullens P., Primm T.P. The relationship of temperature to desiccation and starvation tolerance of the Mycobacterium avium complex. Arch. Microbiol. 2002;178:311–314. doi: 10.1007/s00203-002-0455-x. PubMed DOI

Argueta C., Yoder S., Holtzman A.E., Aronson T.W., Glover N., Berlin O.G., Stelma G.N., Jr., Froman S., Tomasek P. Isolation and identification of nontuberculous mycobacteria from foods as possible exposure sources. J. Food Prot. 2000;63:930–933. doi: 10.4315/0362-028X-63.7.930. PubMed DOI

Zwielehner J., Handschur M., Michaelsen A., Irez S., Demel M., Denner E.B., Haslberger A.G. DGGE and real-time PCR analysis of lactic acid bacteria in bacterial communities of the phyllosphere of lettuce. Mol. Nutr. Food Res. 2008;52:614–623. doi: 10.1002/mnfr.200700158. PubMed DOI

Yoder S., Argueta C., Holtzman A., Aronson T., Berlin O.G., Tomasek P., Glover N., Froman S., Stelma G., Jr. PCR comparison of Mycobacterium avium isolates obtained from patients and foods. Appl. Environ. Microbiol. 1999;65:2650–2653. doi: 10.1128/AEM.65.6.2650-2653.1999. PubMed DOI PMC

Cerna-Cortes J.F., Leon-Montes N., Cortes-Cueto A.L., Salas-Rangel L.P., Helguera-Repetto A.C., Lopez-Hernandez D., Rivera-Gutierrez S., Fernandez-Rendon E., Gonzalez-y-Merchand J.A. Microbiological quality of ready-to-eat vegetables collected in Mexico City: Occurrence of aerobic-mesophilic bacteria, fecal coliforms, and potentially pathogenic nontuberculous mycobacteria. Biomed. Res. Int. 2015;2015:789508. doi: 10.1155/2015/789508. PubMed DOI PMC

Lund P.A., De Biase D., Liran O., Scheler O., Mira N.P., Cetecioglu Z., Fernández E.N., Bover-Cid S., Hall R., Sauer M., et al. Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Front. Microbiol. 2020;11:556140. doi: 10.3389/fmicb.2020.556140. PubMed DOI PMC

Vincent A.T., Nyongesa S., Morneau I., Reed M.B., Tocheva E.I., Veyrier F.J. The mycobacterial cell envelope: A relict from the past or the result of recent evolution? Front. Microbiol. 2018;9:2341. doi: 10.3389/fmicb.2018.02341. PubMed DOI PMC

Niederweis M. Mycobacterial porins—New channel proteins in unique outer membranes. Mol. Microbiol. 2003;49:1167–1177. doi: 10.1046/j.1365-2958.2003.03662.x. PubMed DOI

Pule C.M., Sampson S.L., Warren R.M., Black P.A., van Helden P.D., Victor T.C., Louw G.E. Efflux pump inhibitors: Targeting mycobacterial efflux systems to enhance TB therapy. J. Antimicrob. Chemother. 2016;71:17–26. doi: 10.1093/jac/dkv316. PubMed DOI

Forrellad M.A., Klepp L.I., Gioffre A., Sabio y Garcia J., Morbidoni H.R., de la Paz Santangelo M., Cataldi A.A., Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4:3–66. doi: 10.4161/viru.22329. PubMed DOI PMC

Rao M., Streur T.L., Aldwell F.E., Cook G.M. Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. Pt 4Microbiology. 2001;147:1017–1024. doi: 10.1099/00221287-147-4-1017. PubMed DOI

Portaels F., Pattyn S.R. Growth of mycobacteria in relation to the pH of the medium. Ann. Microbiol. 1982;133:213–221. PubMed

Kyselkova M., Chronakova A., Volna L., Nemec J., Ulmann V., Scharfen J., Elhottova D. Tetracycline resistance and presence of tetracycline resistance determinants tet(V) and tap in rapidly growing mycobacteria from agricultural soils and clinical isolates. Microbes Environ. 2012;27:413–422. doi: 10.1264/jsme2.ME12028. PubMed DOI PMC

Li Y.J., Danelishvili L., Wagner D., Petrofsky M., Bermudez L.E. Identification of virulence determinants of Mycobacterium avium that impact on the ability to resist host killing mechanisms. Pt 1J. Med. Microbiol. 2010;59:8–16. doi: 10.1099/jmm.0.012864-0. PubMed DOI PMC

Parsons L.M., Jankowski C.S., Derbyshire K.M. Conjugal transfer of chromosomal DNA in Mycobacterium smegmatis. Mol. Microbiol. 1998;28:571–582. doi: 10.1046/j.1365-2958.1998.00818.x. PubMed DOI

Hatfull G.F. Molecular genetics of mycobacteriophages. Microbiol. Spectr. 2014;2:1–36. doi: 10.1128/microbiolspec.MGM2-0032-2013. PubMed DOI PMC

Iivanainen E., Martikainen P.J., Vaananen P., Katila M.L. Environmental factors affecting the occurrence of mycobacteria in brook sediments. J. Appl. Microbiol. 1999;86:673–681. doi: 10.1046/j.1365-2672.1999.00711.x. PubMed DOI

Rinaldi P.S., Nisa’Akromah Z., Ramadhan H., Husna S., Syamsudin D.L., Panggabean P.B., Murdianti R.A., Fatahillah M.H., Perala I., Rizqia E.K., et al. Physical and chemical analysis of land in forest peat swamp in Resort Pondok soar, Tanjung Puting National Park, Central Kalimantan. IOP Conf. Series: Earth Environ. Sci. 2019;394:012037. doi: 10.1088/1755-1315/394/1/012037. DOI

Wong E.A., Shin G.A. Removal of Mycobacterium avium subspecies hominissuis (MAH) from drinking water by coagulation, flocculation and sedimentation processes. Lett. Appl. Microbiol. 2015;60:273–278. doi: 10.1111/lam.12368. PubMed DOI

Bodmer T., Miltner E., Bermudez L.E. Mycobacterium avium resists exposure to the acidic conditions of the stomach. FEMS Microbiol. Lett. 2000;182:45–49. doi: 10.1111/j.1574-6968.2000.tb08871.x. PubMed DOI

Ulmann V., Modra H., Babak V., Weston R.T., Pavlik I. Recovery of mycobacteria from heavily contaminated environmental matrices. Microorganism. 2021;9:2178. doi: 10.3390/microorganisms9102178. PubMed DOI PMC

Pavlik I., Ulmann V., Modra H., Gersl M., Rantova B., Zukal J., Zukalova K., Konecny O., Kana V., Kubalek P., et al. Nontuberculous mycobacteria prevalence in bats’ guano from caves and attics of buildings studied by culture and qPCR examinations. Microorganisms. 2021;9:2236. doi: 10.3390/microorganisms9112236. PubMed DOI PMC

Santucci P., Johansen M.D., Point V., Poncin I., Viljoen A., Cavalier J.F., Kremer L., Canaan S. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Sci. Rep. 2019;9:8667. doi: 10.1038/s41598-019-45164-5. PubMed DOI PMC

DePas W.H., Bergkessel M., Newman D.K. Aggregation of nontuberculous mycobacteria is regulated by carbon-nitrogen balance. mBio. 2019;10:e01715-19. doi: 10.1128/mBio.01715-19. PubMed DOI PMC

Ghosh J., Larsson P., Singh B., Pettersson B.M., Islam N.M., Sarkar S.N., Dasgupta S., Kirsebom L.A. Sporulation in mycobacteria. Proc. Natl. Acad. Sci. USA. 2009;106:10781–10786. doi: 10.1073/pnas.0904104106. PubMed DOI PMC

Torvinen E., Lehtola M.J., Martikainen P.J., Miettinen I.T. Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature. Appl. Environ. Microbiol. 2007;73:6201–6207. doi: 10.1128/AEM.00828-07. PubMed DOI PMC

Carson L.A., Petersen N.J., Favero M.S., Aguero S.M. Growth characteristics of atypical mycobacteria in water and their comparative resistance to disinfectants. Appl. Environ. Microbiol. 1978;36:839–846. doi: 10.1128/aem.36.6.839-846.1978. PubMed DOI PMC

Amon J., Titgemeyer F., Burkovski A. A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J. Mol. Microbiol. Biotechnol. 2009;17:20–29. doi: 10.1159/000159195. PubMed DOI

Kumar S., Matange N., Umapathy S., Visweswariah S.S. Linking carbon metabolism to carotenoid production in mycobacteria using Raman spectroscopy. FEMS Microbiol. Lett. 2015;362:1–6. doi: 10.1093/femsle/fnu048. PubMed DOI

Priestman M., Thomas P., Robertson B.D., Shahrezaei V. Mycobacteria modify their cell size control under sub-optimal carbon sources. Front. Cell. Dev. Biol. 2017;5:64. doi: 10.3389/fcell.2017.00064. PubMed DOI PMC

Kazda J., Falkinham J. Biological role of mycobacteria in the environment. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 313–329. Chapter 8.

Liu Y., Deng B., Du J., Zhang G., Hou L. Nutrient burial and environmental changes in the Yangtze Delta in response to recent river basin human activities. Environ. Pollut. 2019;249:225–235. doi: 10.1016/j.envpol.2019.03.030. PubMed DOI

Ogbeide O., Tongo I., Ezemonye L. Risk assessment of agricultural pesticides in water, sediment, and fish from Owan River, Edo State, Nigeria. Environ. Monit. Assess. 2015;187:654. doi: 10.1007/s10661-015-4840-8. PubMed DOI

Pasquier V., Sansjofre P., Lebeau O., Liorzou C., Rabineau M. Acid digestion on river influenced shelf sediment organic matter: Carbon and nitrogen contents and isotopic ratios. Rapid Commun. Mass Spectrom. 2018;32:86–92. doi: 10.1002/rcm.8014. PubMed DOI

Yu Z., Wang X., Han G., Liu X., Zhang E. Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary. Sci. Rep. 2018;8:10825. doi: 10.1038/s41598-018-29200-4. PubMed DOI PMC

Norton C.D., LeChevallier M.W., Falkinham J.O., 3rd Survival of Mycobacterium avium in a model distribution system. Water Res. 2004;38:1457–1466. doi: 10.1016/j.watres.2003.07.008. PubMed DOI

Williams K., Pruden A., Falkinham J.O., Edwards M., Williams K., Pruden A., Falkinham J.O., III., Edwards M. Relationship between organic carbon and opportunistic pathogens in simulated glass water heaters. Pathogens. 2015;4:355–372. doi: 10.3390/pathogens4020355. PubMed DOI PMC

De Voss J.J., Rutter K., Schroeder B.G., Barry C.E., 3rd Iron acquisition and metabolism by mycobacteria. J. Bacteriol. 1999;181:4443–4451. doi: 10.1128/JB.181.15.4443-4451.1999. PubMed DOI PMC

Neyrolles O., Wolschendorf F., Mitra A., Niederweis M. Mycobacteria, metals, and the macrophage. Immunol. Rev. 2015;264:249–263. doi: 10.1111/imr.12265. PubMed DOI PMC

European Union Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. Off. J. Eur. Communities. 2000;L262:21–45.

Sing A., editor. Zoonoses—Infections Affecting Humans and Animals: Focus on Public Health Aspects. Springer; Heidelberg, Germany: Dordrecht, The Netherlands: London, UK: New York, NY, USA: 2015. 1143p

Ortel S. Significance of new results in the research on human listeriosis. Zentralbl. Gynakol. 1983;105:1295–1306. (In German) PubMed

Schaefer H.E. Introduction into pathology of ocular zoonoses. Int. J. Med. Sci. 2009;6:120–122. doi: 10.7150/ijms.6.120. PubMed DOI PMC

White D., editor. George Lucas (A & E Biography) Lerner Pub Group; Minneapolis, MN, USA: 1999. 128p

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...