• This record comes from PubMed

Recovery of Mycobacteria from Heavily Contaminated Environmental Matrices

. 2021 Oct 19 ; 9 (10) : . [epub] 20211019

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
21-12719S Czech Science Foundation
NU20-09-00114 Czech Health Research Council

Links

PubMed 34683499
PubMed Central PMC8538195
DOI 10.3390/microorganisms9102178
PII: microorganisms9102178
Knihovny.cz E-resources

For epidemiology studies, a decontamination method using a solution containing 4.0% NaOH and 0.5% tetradecyltrimethylammonium bromide (TDAB) represents a relatively simple and universal procedure for processing heavily microbially contaminated matrices together with increase of mycobacteria yield and elimination of gross contamination. A contamination rate only averaging 7.3% (2.4% in Cluster S; 6.9% in Cluster R and 12.6% in Cluster E) was found in 787 examined environmental samples. Mycobacteria were cultured from 28.5% of 274 soil and water sediments samples (Cluster S), 60.2% of 251 samples of raw and processed peat and other horticultural substrates (Cluster R), and 29.4% of 262 faecal samples along with other samples of animal origin (Cluster E). A total of 38 species of slow and rapidly growing mycobacteria were isolated. M. avium ssp. hominissuis, M. fortuitum and M. malmoense were the species most often isolated. The parameters for the quantitative detection of mycobacteria by PCR can be significantly refined by treating the sample suspension before DNA isolation with PMA (propidium monoazide) solution. This effectively eliminates DNA residue from both dead mycobacterial cells and potentially interfering DNA segments present from other microbial flora. In terms of human exposure risk assessment, the potential exposure to live non-tuberculous mycobacteria can be more accurately determined.

See more in PubMed

LPSN: List of Prokaryotic Names with Standing in Nomenclature. [(accessed on 6 October 2021)]. Available online: https://lpsn.dsmz.de/

Forbes B.A. Mycobacterial Taxonomy. J. Clin. Microbiol. 2017;55:380–383. doi: 10.1128/JCM.01287-16. PubMed DOI PMC

Falkinham J.O., 3rd Surrounded by mycobacteria: Nontuberculous mycobacteria in the human environment. J. Appl. Microbiol. 2009;107:356–367. doi: 10.1111/j.1365-2672.2009.04161.x. PubMed DOI

Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanzaro A., Daley C., Gordin F., Holland S.M., Horsburgh R., Huitt G., Iademarco M.F., et al. ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care. Med. 2007;175:367–416. doi: 10.1164/rccm.200604-571ST. PubMed DOI

Meissner P.S., Falkinham J.O., 3rd Plasmid DNA profiles as epidemiological markers for clinical and environmental isolates of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. J. Infect. Dis. 1986;153:325–331. doi: 10.1093/infdis/153.2.325. PubMed DOI

Zewinger S., Meier C.M., Fliser D., Klingele M. Mycobacterium fortuitum peritonitis in peritoneal dialysis and its effects on the peritoneum. Clin. Nephrol. 2014;82:341–346. doi: 10.5414/CN107704. PubMed DOI

Nessar R., Cambau E., Reyrat J.M., Murray A., Gicquel B. Mycobacterium abscessus: A new antibiotic nightmare. J. Antimicrob. Chemother. 2012;67:810–818. doi: 10.1093/jac/dkr578. PubMed DOI

DaCosta A., Jordan C.L., Giddings O., Lin F.C., Gilligan P., Esther C.R., Jr. Outcomes associated with antibiotic regimens for treatment of Mycobacterium abscessus in cystic fibrosis patients. J. Cyst. Fibros. 2017;16:483–487. doi: 10.1016/j.jcf.2017.04.013. PubMed DOI

Zimmermann P., Finn A., Curtis N. Does BCG vaccination protect against nontuberculous mycobacterial infection? A systematic review and meta-analysis. J. Infect. Dis. 2018;218:679–687. doi: 10.1093/infdis/jiy207. PubMed DOI

Willemse S.H., Oomens M.A.E.M., De Lange J., Karssemakers L.H.E. Diagnosing nontuberculous mycobacterial cervicofacial lymphadenitis in children: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2018;112:48–54. doi: 10.1016/j.ijporl.2018.06.034. PubMed DOI

Delghandi M.R., El-Matbouli M., Menanteau-Ledouble S. Mycobacteriosis and infections with non-tuberculous mycobacteria in aquatic organisms: A review. Microorganisms. 2020;8:1368. doi: 10.3390/microorganisms8091368. PubMed DOI PMC

Mugetti D., Varello K., Pastorino P., Tomasoni M., Menconi V., Bozzetta E., Dondo A., Prearo M. Investigation of potential reservoirs of non-tuberculous mycobacteria in a European Sea Bass (Dicentrarchus labrax) Farm. Pathogens. 2021;10:1014. doi: 10.3390/pathogens10081014. PubMed DOI PMC

Petroff S.A. A new and rapid method for the isolation and cultivation of tubercle bacilli directly from the sputum and feces. J. Exp. Med. 1915;21:38–42. doi: 10.1084/jem.21.1.38. PubMed DOI PMC

Kubica G.P., Dye W.E., Cohn M.L., Middlebrook G. Sputum digestion and decontamination with N-acetyl-L-cysteine-sodium hydroxide for culture of mycobacteria. Am. Rev. Respir. Dis. 1963;87:775–779. PubMed

Whittier S., Hopfer R.L., Knowles M.R., Gilligan P.H. Improved recovery of mycobacteria from respiratory secretions of patients with cystic fibrosis. J. Clin. Microbiol. 1993;31:861–864. doi: 10.1128/jcm.31.4.861-864.1993. PubMed DOI PMC

Wood R.C., Andama A., Hermansky G., Burkot S., Asege L., Job M., Katumba D., Nakaye M., Mwebe S.Z., Mulondo J., et al. Characterization of oral swab samples for diagnosis of pulmonary tuberculosis. PLoS ONE. 2021;16:e0251422. doi: 10.1371/journal.pone.0251422. PubMed DOI PMC

Pena J.A., Ferraro M.J., Hoffman C.G., Branda J.A. Growth detection failures by the nonradiometric Bactec MGIT 960 mycobacterial culture system. J. Clin. Microbiol. 2012;50:2092–2095. doi: 10.1128/JCM.00108-12. PubMed DOI PMC

Piersimoni C., Nista D., Bornigia S., Gherardi G. Unreliable detection of Mycobacterium xenopi by the nonradiometric Bactec MGIT 960 culture system. J. Clin. Microbiol. 2009;47:804–806. doi: 10.1128/JCM.01444-08. PubMed DOI PMC

Stephenson D., Perry A., Appleby M.R., Lee D., Davison J., Johnston A., Jones A.L., Nelson A., Bourke S.J., Thomas M.F., et al. An evaluation of methods for the isolation of nontuberculous mycobacteria from patients with cystic fibrosis, bronchiectasis and patients assessed for lung transplantation. BMC Pulm. Med. 2019;19:19. doi: 10.1186/s12890-019-0781-2. PubMed DOI PMC

Radomski N., Cambau E., Moulin L., Haenn S., Moilleron R., Lucas F.S. Comparison of culture methods for isolation of nontuberculous mycobacteria from surface waters. Appl. Environ. Microbiol. 2010;76:3514–3520. doi: 10.1128/AEM.02659-09. PubMed DOI PMC

Pileggi S.M., Jordan H., Clennon J.A., Whitney E., Benbow M.E., Merritt R., McIntosh M., Kimbirauskas R., Small P., Boakye D., et al. Landscape and environmental influences on Mycobacterium ulcerans distribution among aquatic sites in Ghana. PLoS ONE. 2017;12:e0176375. doi: 10.1371/journal.pone.0176375. PubMed DOI PMC

Parashar D., Das R., Chauhan D.S., Sharma V.D., Lavania M., Yadav V.S., Chauhan S.V., Katoch V.M. Identification of environmental mycobacteria isolated from Agra, north India by conventional & molecular approaches. Ind. J. Med. Res. 2009;129:424–431. PubMed

Cortesia C., Lopez G.J., de Waard J.H., Takiff H.E. The use of quaternary ammonium disinfectants selects for persisters at high frequency from some species of non-tuberculous mycobacteria and may be associated with outbreaks of soft tissue infections. J. Antimicrob. Chemother. 2010;65:2574–2581. doi: 10.1093/jac/dkq366. PubMed DOI PMC

Gerba C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Envir. Microbiol. 2015;81:464–469. doi: 10.1128/AEM.02633-14. PubMed DOI PMC

Vaerewijck M.J.M., Huys G., Palomino J.C., Swings J., Portaels F. Recovery of non-tuberculous mycobacteria from water is influenced by phenotypic characteristics and decontamination methods. FEMS Microbiol. Rev. 2005;29:911–934. doi: 10.1016/j.femsre.2005.02.001. PubMed DOI

Fernandes H.M.Z., Conceicao E.C., Gomes K.M., da Silva M.G., Dias R.C.S., Duarte R.S. Comparison of culture methods for isolation of nontuberculous mycobacteria from surface waters. Curr. Microbiol. 2020;77:621–631. doi: 10.1007/s00284-019-01704-w. PubMed DOI

Rasanen N.H.J., Rintala H., Miettinen I.T., Torvinen E. Comparison of culture and qPCR methods in detection of mycobacteria from drinking waters. Can. J. Microbiol. 2013;59:208–286. doi: 10.1139/cjm-2012-0695. PubMed DOI

Mohajeri P., Yazdani L., Shahraki A.H., Alvandi A., Atashi S., Farahani A., Almasi A., Rezaei M. Verification of frequency in species of nontuberculous mycobacteria in Kermanshah drinking water supplies using the PCR-sequencing method. Microb. Drug Resist. 2017;23:359–364. doi: 10.1089/mdr.2016.0064. PubMed DOI

Oriani A.S., Marfil M.J., Zumarraga M.J., Baldini M.D. Prevalence and species diversity of nontuberculous mycobacteria in drinking water supply system of Bahía Blanca City, Argentina. Int. J. Mycobacteriol. 2019;8:138–145. PubMed

Kaelin M.B., Kuster S.P., Hasse B., Schulthess B., Imkamp F., Halbe M., Sander P., Sax H., Schreiber P.W. Diversity of nontuberculous mycobacteria in heater-cooler devices: Results from prospective surveillance. J. Hosp. Infect. 2020;105:480–485. doi: 10.1016/j.jhin.2020.03.006. PubMed DOI

Akkaya O., Kurtoglu M.G. Comparison of conventional and molecular methods used for diagnosis of Mycobacterium tuberculosis in clinical samples. Clin. Lab. 2019;65 doi: 10.7754/Clin.Lab.2019.190145. PubMed DOI

Kralik P., Slana I., Kralova A., Babak V., Whitlock R.H., Pavlik I. Development of a predictive model for detection of Mycobacterium avium subsp. paratuberculosis in faeces by quantitative real time PCR. Vet. Microbiol. 2011;149:133–138. doi: 10.1016/j.vetmic.2010.10.009. PubMed DOI

Klanicova B., Vondruskova H., Slana I., Kaevska M., Pavlik I. Real-time quantitative PCR detection of Mycobacterium avium subspecies in meat products. J. Food Prot. 2011;74:636–640. doi: 10.4315/0362-028X.JFP-10-332. PubMed DOI

Slany M., Jezek P., Fiserova V., Bodnarova M., Stork J., Havelkova M., Kalat F., Pavlik I. Mycobacterium marinum infections in humans and tracing of its possible environmental sources. Can. J. Microbiol. 2012;58:39–44. doi: 10.1139/w11-104. PubMed DOI

Klanicova B., Lorencova A., Makovcova J., Vlkova H., Kralik P., Pavlik I., Slany M. Survival of three Mycobacterium avium subsp. hominissuis isolates in fish products after hot smoking and frying. Int. J. Food Sci. Technol. 2013;48:533–538. doi: 10.1111/j.1365-2621.2012.03215.x. DOI

Moravkova M., Lamka J., Slany M., Pavlik I. Genetic IS901 diversity among Mycobacterium avium subsp. avium isolates from four pheasant flocks. J. Vet. Sci. 2013;14:99–102. doi: 10.4142/jvs.2013.14.1.99. PubMed DOI PMC

Slana I., Kralik P., Kralova A., Pavlik I. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 2008;128:250–257. doi: 10.1016/j.ijfoodmicro.2008.08.013. PubMed DOI

Slana I., Liapi M., Moravkova M., Kralova A., Pavlik I. Mycobacterium avium subsp. paratuberculosis in cow bulk tank milk in Cyprus detected by culture and quantitative IS900 and F57 real–time PCR. Prev. Vet. Med. 2009;89:223–226. doi: 10.1016/j.prevetmed.2009.02.020. PubMed DOI

Slana I., Kaevska M., Kralik P., Horvathova A., Pavlik I. Distribution of Mycobacterium avium subsp. avium and M. a. hominissuis in artificially infected pigs studied by culture and IS901 and IS1245 quantitative real time PCR. Vet. Microbiol. 2010;144:437–443. doi: 10.1016/j.vetmic.2010.02.024. PubMed DOI

Hruska K., Slana I., Kralik P., Pavlik I. Mycobacterium avium subsp. paratuberculosis in powdered infant milk: F57 competitive real time PCR. Vet. Med. Czech. 2011;56:226–230. doi: 10.17221/1563-VETMED. DOI

Lorencova A., Klanicova B., Makovcova J., Slana I., Vojkovska H., Babak V., Pavlik I., Slany M. Nontuberculous mycobacteria in freshwater fish and fish products intended for human consumption. Foodborne Pathog. Dis. 2013;10:573–576. doi: 10.1089/fpd.2012.1419. PubMed DOI

Kazda J., Pavlik I., Falkinham J., Hruska K. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: 2009. p. 520.

Nkuipou-Kenfack E., Engel H., Fakih S., Nocker A. Improving efficiency of viability-PCR for selective detection of live cells. J. Microbiol. Meth. 2013;93:20–24. doi: 10.1016/j.mimet.2013.01.018. PubMed DOI

Elizaquivel P., Aznar R., Sánchez G. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. J. Appl. Microbiol. 2014;116:1–13. doi: 10.1111/jam.12365. PubMed DOI

Codony F., Dinh-Thanh M., Agusti G. Key factors for removing bias in viability PCR-based methods: A review. Curr. Microbiol. 2020;77:682–687. doi: 10.1007/s00284-019-01829-y. PubMed DOI

Cao Y., Zhou D., Li R., Yu Y., Xiao X., Zhou A., Liu D., Li X. Molecular monitoring of disinfection efficacy of E. coli O157: H7 in bottled purified drinking water by quantitative PCR with a novel dye. J. Food Process. Preserv. 2019;43:e13875. doi: 10.1111/jfpp.13875. DOI

Nocker A., Cheung C.Y., Camper A.K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Meth. 2006;67:310–320. doi: 10.1016/j.mimet.2006.04.015. PubMed DOI

Kralik P., Nocker A., Pavlik I. Mycobacterium avium subsp. paratuberculosis viability determination using f57 quantitative PCR in combination with propidium monoazide treatment. Int. J. Food Microbiol. 2010;141:S80–S86. doi: 10.1016/j.ijfoodmicro.2010.03.018. PubMed DOI

Kim Y.J., Lee S.M., Park B.K., Kim S.S., Yi J., Kim H.H., Lee E.Y., Chang C.L. Evaluation of propidium monoazide real-time PCR for early detection of viable Mycobacterium tuberculosis in clinical respiratory specimens. Ann. Lab. Med. 2014;34:203–209. doi: 10.3343/alm.2014.34.3.203. PubMed DOI PMC

Kayigire X.A., Friedrich S.O., Karinja M.N., van der Merwe L., Martinson N.A., Diacon A.H. Propidium monoazide and Xpert MTB/RIF to quantify Mycobacterium tuberculosis cells. Tuberculosis. 2016;101:79–84. doi: 10.1016/j.tube.2016.08.006. PubMed DOI

Dorn-In S., Gareis M., Schwaiger K. Differentiation of live and dead Mycobacterium tuberculosis complex in meat samples using PMA qPCR. Food Microbiol. 2019;84:103275. doi: 10.1016/j.fm.2019.103275. PubMed DOI

Lu J., Zheng H., Chu P., Han S., Yang H., Wang Z., Shi J., Yang Z. Direct detection from clinical sputum samples to differentiate live and dead Mycobacterium tuberculosis. J. Clin. Lab. Anal. 2019;33:e22716. doi: 10.1002/jcla.22716. PubMed DOI PMC

Ditommaso S., Giacomuzzi M., Memoli G., Cavallo R., Curtoni A., Avolio M., Silvestre C., Zotti C.M. Reduction of turnaround time for non-tuberculous mycobacteria detection in heater-cooler units by propidium monoazide-real-time polymerase chain reaction. J. Hosp. Infect. 2020;104:365–373. doi: 10.1016/j.jhin.2019.10.010. PubMed DOI

Nossa C.W., Oberdorf W.E., Yang L., Aas J.A., Paster B.J., Desantis T.Z., Brodie E.L., Malamud D., Poles M.A., Pei Z. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 2010;16:4135–4144. doi: 10.3748/wjg.v16.i33.4135. PubMed DOI PMC

Telenti A., Marchesi F., Balz M., Bally F., Bottger E.C., Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 1993;31:175–178. doi: 10.1128/jcm.31.2.175-178.1993. PubMed DOI PMC

Turankar R.P., Singh V., Gupta H., Pathak V.K., Ahuja M., Singh I., Lavania M., Dinda A.K., Sengupta U. Association of non-tuberculous mycobacteria with Mycobacterium leprae in environment of leprosy endemic regions in India. Infect. Genet. Evol. 2019;72:191–198. doi: 10.1016/j.meegid.2018.11.010. PubMed DOI

Casini B., Tuvo B., Totaro M., Baggiani A., Privitera G. Detection and decontamination of Mycobacterium chimaera and other non-tuberculosis mycobacteria in heater-cooler devices used in cardiopulmonary bypass: A Manufacturer and National Guidelines Summary, and a potential resolution to the problem requiring further investigation. Perfusion. 2020;35:190–196. PubMed

Palomino J.C., Portaels F. Effects of decontamination methods and culture conditions on viability of Mycobacterium ulcerans in the BACTEC system. J. Clin. Microbiol. 1998;36:402–408. doi: 10.1128/JCM.36.2.402-408.1998. PubMed DOI PMC

Portaels F., De Muynec A., Sylla M.P. Selective isolation of mycobacteria from soil: A statistical analysis approach. J. Gen. Microbiol. 1988;134:849–855. doi: 10.1099/00221287-134-3-849. PubMed DOI

Allen B.W. Comparison of three methods for decontamination of faeces for isolation of Mycobacterium tuberculosis. Tubercle. 1991;72:214–217. doi: 10.1016/0041-3879(91)90011-G. PubMed DOI

Sattar A., Zakaria Z., Abu J., Aziz S.A., Gabriel R.P. Evaluation of six decontamination procedures for isolation of Mycobacterium avium complex from avian feces. PLoS ONE. 2018;13:e0202034. doi: 10.1371/journal.pone.0202034. PubMed DOI PMC

Neumann M., Schulze-Robbecke R., Hagenau C., Behringer K. Comparison of methods for isolation of mycobacteria from water. Appl. Environ. Microbiol. 1997;63:547–552. doi: 10.1128/aem.63.2.547-552.1997. PubMed DOI PMC

Iivanainen E., Martikainen P.J., Vaananen P., Katila M.L. Environmental factors affecting the occurrence of mycobacteria in brook sediments. J. Appl. Microbiol. 1999;86:673–681. doi: 10.1046/j.1365-2672.1999.00711.x. PubMed DOI

Falkinham J.O., 3rd Current epidemiologic trends of the nontuberculous mycobacteria (NTM) Curr. Environ. Health Rep. 2016;3:161–167. doi: 10.1007/s40572-016-0086-z. PubMed DOI

Honda J.R., Hess T., Carlson R., Kandasamy P., Nieto Ramirez L.M., Norton G.J., Virdi R., Islam M.N., Mehaffy C., Hasan N.A., et al. Nontuberculous mycobacteria show differential infectivity and use phospholipids to antagonize LL-37. Am. J. Respir. Cell. Mol. Biol. 2020;62:354–363. doi: 10.1165/rcmb.2018-0278OC. PubMed DOI PMC

Stephenson D., Perry A., Nelson A., Robb A.E., Thomas M.F., Bourke S.J., Perry J.D., Jones A.L. Decontamination strategies used for AFB culture significantly reduce the viability of Mycobacterium abscessus complex in sputum samples from patients with cystic fibrosis. Microorganisms. 2021;9:1597. doi: 10.3390/microorganisms9081597. PubMed DOI PMC

Alexander K.J., Furlong J.L., Baron J.L., Rihs J.D., Stephenson D., Perry J.D., Stout J.E. Evaluation of a new culture medium for isolation of nontuberculous mycobacteria from environmental water samples. PLoS ONE. 2021;16:e0247166. doi: 10.1371/journal.pone.0247166. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...