Recovery of Mycobacteria from Heavily Contaminated Environmental Matrices
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-12719S
Czech Science Foundation
NU20-09-00114
Czech Health Research Council
PubMed
34683499
PubMed Central
PMC8538195
DOI
10.3390/microorganisms9102178
PII: microorganisms9102178
Knihovny.cz E-resources
- Keywords
- decontamination, mycobacteria other than tuberculosis (MOTT), non-tuberculous mycobacteria (NTM), quaternary ammonium compounds, saprophytic environmental mycobacteria,
- Publication type
- Journal Article MeSH
For epidemiology studies, a decontamination method using a solution containing 4.0% NaOH and 0.5% tetradecyltrimethylammonium bromide (TDAB) represents a relatively simple and universal procedure for processing heavily microbially contaminated matrices together with increase of mycobacteria yield and elimination of gross contamination. A contamination rate only averaging 7.3% (2.4% in Cluster S; 6.9% in Cluster R and 12.6% in Cluster E) was found in 787 examined environmental samples. Mycobacteria were cultured from 28.5% of 274 soil and water sediments samples (Cluster S), 60.2% of 251 samples of raw and processed peat and other horticultural substrates (Cluster R), and 29.4% of 262 faecal samples along with other samples of animal origin (Cluster E). A total of 38 species of slow and rapidly growing mycobacteria were isolated. M. avium ssp. hominissuis, M. fortuitum and M. malmoense were the species most often isolated. The parameters for the quantitative detection of mycobacteria by PCR can be significantly refined by treating the sample suspension before DNA isolation with PMA (propidium monoazide) solution. This effectively eliminates DNA residue from both dead mycobacterial cells and potentially interfering DNA segments present from other microbial flora. In terms of human exposure risk assessment, the potential exposure to live non-tuberculous mycobacteria can be more accurately determined.
Public Health Institute in Ostrava Partyzanske Nam 7 702 00 Ostrava Czech Republic
Veterinary Research Institute v v i Hudcova 70 621 00 Brno Czech Republic
See more in PubMed
LPSN: List of Prokaryotic Names with Standing in Nomenclature. [(accessed on 6 October 2021)]. Available online: https://lpsn.dsmz.de/
Forbes B.A. Mycobacterial Taxonomy. J. Clin. Microbiol. 2017;55:380–383. doi: 10.1128/JCM.01287-16. PubMed DOI PMC
Falkinham J.O., 3rd Surrounded by mycobacteria: Nontuberculous mycobacteria in the human environment. J. Appl. Microbiol. 2009;107:356–367. doi: 10.1111/j.1365-2672.2009.04161.x. PubMed DOI
Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanzaro A., Daley C., Gordin F., Holland S.M., Horsburgh R., Huitt G., Iademarco M.F., et al. ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care. Med. 2007;175:367–416. doi: 10.1164/rccm.200604-571ST. PubMed DOI
Meissner P.S., Falkinham J.O., 3rd Plasmid DNA profiles as epidemiological markers for clinical and environmental isolates of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. J. Infect. Dis. 1986;153:325–331. doi: 10.1093/infdis/153.2.325. PubMed DOI
Zewinger S., Meier C.M., Fliser D., Klingele M. Mycobacterium fortuitum peritonitis in peritoneal dialysis and its effects on the peritoneum. Clin. Nephrol. 2014;82:341–346. doi: 10.5414/CN107704. PubMed DOI
Nessar R., Cambau E., Reyrat J.M., Murray A., Gicquel B. Mycobacterium abscessus: A new antibiotic nightmare. J. Antimicrob. Chemother. 2012;67:810–818. doi: 10.1093/jac/dkr578. PubMed DOI
DaCosta A., Jordan C.L., Giddings O., Lin F.C., Gilligan P., Esther C.R., Jr. Outcomes associated with antibiotic regimens for treatment of Mycobacterium abscessus in cystic fibrosis patients. J. Cyst. Fibros. 2017;16:483–487. doi: 10.1016/j.jcf.2017.04.013. PubMed DOI
Zimmermann P., Finn A., Curtis N. Does BCG vaccination protect against nontuberculous mycobacterial infection? A systematic review and meta-analysis. J. Infect. Dis. 2018;218:679–687. doi: 10.1093/infdis/jiy207. PubMed DOI
Willemse S.H., Oomens M.A.E.M., De Lange J., Karssemakers L.H.E. Diagnosing nontuberculous mycobacterial cervicofacial lymphadenitis in children: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2018;112:48–54. doi: 10.1016/j.ijporl.2018.06.034. PubMed DOI
Delghandi M.R., El-Matbouli M., Menanteau-Ledouble S. Mycobacteriosis and infections with non-tuberculous mycobacteria in aquatic organisms: A review. Microorganisms. 2020;8:1368. doi: 10.3390/microorganisms8091368. PubMed DOI PMC
Mugetti D., Varello K., Pastorino P., Tomasoni M., Menconi V., Bozzetta E., Dondo A., Prearo M. Investigation of potential reservoirs of non-tuberculous mycobacteria in a European Sea Bass (Dicentrarchus labrax) Farm. Pathogens. 2021;10:1014. doi: 10.3390/pathogens10081014. PubMed DOI PMC
Petroff S.A. A new and rapid method for the isolation and cultivation of tubercle bacilli directly from the sputum and feces. J. Exp. Med. 1915;21:38–42. doi: 10.1084/jem.21.1.38. PubMed DOI PMC
Kubica G.P., Dye W.E., Cohn M.L., Middlebrook G. Sputum digestion and decontamination with N-acetyl-L-cysteine-sodium hydroxide for culture of mycobacteria. Am. Rev. Respir. Dis. 1963;87:775–779. PubMed
Whittier S., Hopfer R.L., Knowles M.R., Gilligan P.H. Improved recovery of mycobacteria from respiratory secretions of patients with cystic fibrosis. J. Clin. Microbiol. 1993;31:861–864. doi: 10.1128/jcm.31.4.861-864.1993. PubMed DOI PMC
Wood R.C., Andama A., Hermansky G., Burkot S., Asege L., Job M., Katumba D., Nakaye M., Mwebe S.Z., Mulondo J., et al. Characterization of oral swab samples for diagnosis of pulmonary tuberculosis. PLoS ONE. 2021;16:e0251422. doi: 10.1371/journal.pone.0251422. PubMed DOI PMC
Pena J.A., Ferraro M.J., Hoffman C.G., Branda J.A. Growth detection failures by the nonradiometric Bactec MGIT 960 mycobacterial culture system. J. Clin. Microbiol. 2012;50:2092–2095. doi: 10.1128/JCM.00108-12. PubMed DOI PMC
Piersimoni C., Nista D., Bornigia S., Gherardi G. Unreliable detection of Mycobacterium xenopi by the nonradiometric Bactec MGIT 960 culture system. J. Clin. Microbiol. 2009;47:804–806. doi: 10.1128/JCM.01444-08. PubMed DOI PMC
Stephenson D., Perry A., Appleby M.R., Lee D., Davison J., Johnston A., Jones A.L., Nelson A., Bourke S.J., Thomas M.F., et al. An evaluation of methods for the isolation of nontuberculous mycobacteria from patients with cystic fibrosis, bronchiectasis and patients assessed for lung transplantation. BMC Pulm. Med. 2019;19:19. doi: 10.1186/s12890-019-0781-2. PubMed DOI PMC
Radomski N., Cambau E., Moulin L., Haenn S., Moilleron R., Lucas F.S. Comparison of culture methods for isolation of nontuberculous mycobacteria from surface waters. Appl. Environ. Microbiol. 2010;76:3514–3520. doi: 10.1128/AEM.02659-09. PubMed DOI PMC
Pileggi S.M., Jordan H., Clennon J.A., Whitney E., Benbow M.E., Merritt R., McIntosh M., Kimbirauskas R., Small P., Boakye D., et al. Landscape and environmental influences on Mycobacterium ulcerans distribution among aquatic sites in Ghana. PLoS ONE. 2017;12:e0176375. doi: 10.1371/journal.pone.0176375. PubMed DOI PMC
Parashar D., Das R., Chauhan D.S., Sharma V.D., Lavania M., Yadav V.S., Chauhan S.V., Katoch V.M. Identification of environmental mycobacteria isolated from Agra, north India by conventional & molecular approaches. Ind. J. Med. Res. 2009;129:424–431. PubMed
Cortesia C., Lopez G.J., de Waard J.H., Takiff H.E. The use of quaternary ammonium disinfectants selects for persisters at high frequency from some species of non-tuberculous mycobacteria and may be associated with outbreaks of soft tissue infections. J. Antimicrob. Chemother. 2010;65:2574–2581. doi: 10.1093/jac/dkq366. PubMed DOI PMC
Gerba C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Envir. Microbiol. 2015;81:464–469. doi: 10.1128/AEM.02633-14. PubMed DOI PMC
Vaerewijck M.J.M., Huys G., Palomino J.C., Swings J., Portaels F. Recovery of non-tuberculous mycobacteria from water is influenced by phenotypic characteristics and decontamination methods. FEMS Microbiol. Rev. 2005;29:911–934. doi: 10.1016/j.femsre.2005.02.001. PubMed DOI
Fernandes H.M.Z., Conceicao E.C., Gomes K.M., da Silva M.G., Dias R.C.S., Duarte R.S. Comparison of culture methods for isolation of nontuberculous mycobacteria from surface waters. Curr. Microbiol. 2020;77:621–631. doi: 10.1007/s00284-019-01704-w. PubMed DOI
Rasanen N.H.J., Rintala H., Miettinen I.T., Torvinen E. Comparison of culture and qPCR methods in detection of mycobacteria from drinking waters. Can. J. Microbiol. 2013;59:208–286. doi: 10.1139/cjm-2012-0695. PubMed DOI
Mohajeri P., Yazdani L., Shahraki A.H., Alvandi A., Atashi S., Farahani A., Almasi A., Rezaei M. Verification of frequency in species of nontuberculous mycobacteria in Kermanshah drinking water supplies using the PCR-sequencing method. Microb. Drug Resist. 2017;23:359–364. doi: 10.1089/mdr.2016.0064. PubMed DOI
Oriani A.S., Marfil M.J., Zumarraga M.J., Baldini M.D. Prevalence and species diversity of nontuberculous mycobacteria in drinking water supply system of Bahía Blanca City, Argentina. Int. J. Mycobacteriol. 2019;8:138–145. PubMed
Kaelin M.B., Kuster S.P., Hasse B., Schulthess B., Imkamp F., Halbe M., Sander P., Sax H., Schreiber P.W. Diversity of nontuberculous mycobacteria in heater-cooler devices: Results from prospective surveillance. J. Hosp. Infect. 2020;105:480–485. doi: 10.1016/j.jhin.2020.03.006. PubMed DOI
Akkaya O., Kurtoglu M.G. Comparison of conventional and molecular methods used for diagnosis of Mycobacterium tuberculosis in clinical samples. Clin. Lab. 2019;65 doi: 10.7754/Clin.Lab.2019.190145. PubMed DOI
Kralik P., Slana I., Kralova A., Babak V., Whitlock R.H., Pavlik I. Development of a predictive model for detection of Mycobacterium avium subsp. paratuberculosis in faeces by quantitative real time PCR. Vet. Microbiol. 2011;149:133–138. doi: 10.1016/j.vetmic.2010.10.009. PubMed DOI
Klanicova B., Vondruskova H., Slana I., Kaevska M., Pavlik I. Real-time quantitative PCR detection of Mycobacterium avium subspecies in meat products. J. Food Prot. 2011;74:636–640. doi: 10.4315/0362-028X.JFP-10-332. PubMed DOI
Slany M., Jezek P., Fiserova V., Bodnarova M., Stork J., Havelkova M., Kalat F., Pavlik I. Mycobacterium marinum infections in humans and tracing of its possible environmental sources. Can. J. Microbiol. 2012;58:39–44. doi: 10.1139/w11-104. PubMed DOI
Klanicova B., Lorencova A., Makovcova J., Vlkova H., Kralik P., Pavlik I., Slany M. Survival of three Mycobacterium avium subsp. hominissuis isolates in fish products after hot smoking and frying. Int. J. Food Sci. Technol. 2013;48:533–538. doi: 10.1111/j.1365-2621.2012.03215.x. DOI
Moravkova M., Lamka J., Slany M., Pavlik I. Genetic IS901 diversity among Mycobacterium avium subsp. avium isolates from four pheasant flocks. J. Vet. Sci. 2013;14:99–102. doi: 10.4142/jvs.2013.14.1.99. PubMed DOI PMC
Slana I., Kralik P., Kralova A., Pavlik I. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 2008;128:250–257. doi: 10.1016/j.ijfoodmicro.2008.08.013. PubMed DOI
Slana I., Liapi M., Moravkova M., Kralova A., Pavlik I. Mycobacterium avium subsp. paratuberculosis in cow bulk tank milk in Cyprus detected by culture and quantitative IS900 and F57 real–time PCR. Prev. Vet. Med. 2009;89:223–226. doi: 10.1016/j.prevetmed.2009.02.020. PubMed DOI
Slana I., Kaevska M., Kralik P., Horvathova A., Pavlik I. Distribution of Mycobacterium avium subsp. avium and M. a. hominissuis in artificially infected pigs studied by culture and IS901 and IS1245 quantitative real time PCR. Vet. Microbiol. 2010;144:437–443. doi: 10.1016/j.vetmic.2010.02.024. PubMed DOI
Hruska K., Slana I., Kralik P., Pavlik I. Mycobacterium avium subsp. paratuberculosis in powdered infant milk: F57 competitive real time PCR. Vet. Med. Czech. 2011;56:226–230. doi: 10.17221/1563-VETMED. DOI
Lorencova A., Klanicova B., Makovcova J., Slana I., Vojkovska H., Babak V., Pavlik I., Slany M. Nontuberculous mycobacteria in freshwater fish and fish products intended for human consumption. Foodborne Pathog. Dis. 2013;10:573–576. doi: 10.1089/fpd.2012.1419. PubMed DOI
Kazda J., Pavlik I., Falkinham J., Hruska K. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: 2009. p. 520.
Nkuipou-Kenfack E., Engel H., Fakih S., Nocker A. Improving efficiency of viability-PCR for selective detection of live cells. J. Microbiol. Meth. 2013;93:20–24. doi: 10.1016/j.mimet.2013.01.018. PubMed DOI
Elizaquivel P., Aznar R., Sánchez G. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. J. Appl. Microbiol. 2014;116:1–13. doi: 10.1111/jam.12365. PubMed DOI
Codony F., Dinh-Thanh M., Agusti G. Key factors for removing bias in viability PCR-based methods: A review. Curr. Microbiol. 2020;77:682–687. doi: 10.1007/s00284-019-01829-y. PubMed DOI
Cao Y., Zhou D., Li R., Yu Y., Xiao X., Zhou A., Liu D., Li X. Molecular monitoring of disinfection efficacy of E. coli O157: H7 in bottled purified drinking water by quantitative PCR with a novel dye. J. Food Process. Preserv. 2019;43:e13875. doi: 10.1111/jfpp.13875. DOI
Nocker A., Cheung C.Y., Camper A.K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Meth. 2006;67:310–320. doi: 10.1016/j.mimet.2006.04.015. PubMed DOI
Kralik P., Nocker A., Pavlik I. Mycobacterium avium subsp. paratuberculosis viability determination using f57 quantitative PCR in combination with propidium monoazide treatment. Int. J. Food Microbiol. 2010;141:S80–S86. doi: 10.1016/j.ijfoodmicro.2010.03.018. PubMed DOI
Kim Y.J., Lee S.M., Park B.K., Kim S.S., Yi J., Kim H.H., Lee E.Y., Chang C.L. Evaluation of propidium monoazide real-time PCR for early detection of viable Mycobacterium tuberculosis in clinical respiratory specimens. Ann. Lab. Med. 2014;34:203–209. doi: 10.3343/alm.2014.34.3.203. PubMed DOI PMC
Kayigire X.A., Friedrich S.O., Karinja M.N., van der Merwe L., Martinson N.A., Diacon A.H. Propidium monoazide and Xpert MTB/RIF to quantify Mycobacterium tuberculosis cells. Tuberculosis. 2016;101:79–84. doi: 10.1016/j.tube.2016.08.006. PubMed DOI
Dorn-In S., Gareis M., Schwaiger K. Differentiation of live and dead Mycobacterium tuberculosis complex in meat samples using PMA qPCR. Food Microbiol. 2019;84:103275. doi: 10.1016/j.fm.2019.103275. PubMed DOI
Lu J., Zheng H., Chu P., Han S., Yang H., Wang Z., Shi J., Yang Z. Direct detection from clinical sputum samples to differentiate live and dead Mycobacterium tuberculosis. J. Clin. Lab. Anal. 2019;33:e22716. doi: 10.1002/jcla.22716. PubMed DOI PMC
Ditommaso S., Giacomuzzi M., Memoli G., Cavallo R., Curtoni A., Avolio M., Silvestre C., Zotti C.M. Reduction of turnaround time for non-tuberculous mycobacteria detection in heater-cooler units by propidium monoazide-real-time polymerase chain reaction. J. Hosp. Infect. 2020;104:365–373. doi: 10.1016/j.jhin.2019.10.010. PubMed DOI
Nossa C.W., Oberdorf W.E., Yang L., Aas J.A., Paster B.J., Desantis T.Z., Brodie E.L., Malamud D., Poles M.A., Pei Z. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 2010;16:4135–4144. doi: 10.3748/wjg.v16.i33.4135. PubMed DOI PMC
Telenti A., Marchesi F., Balz M., Bally F., Bottger E.C., Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 1993;31:175–178. doi: 10.1128/jcm.31.2.175-178.1993. PubMed DOI PMC
Turankar R.P., Singh V., Gupta H., Pathak V.K., Ahuja M., Singh I., Lavania M., Dinda A.K., Sengupta U. Association of non-tuberculous mycobacteria with Mycobacterium leprae in environment of leprosy endemic regions in India. Infect. Genet. Evol. 2019;72:191–198. doi: 10.1016/j.meegid.2018.11.010. PubMed DOI
Casini B., Tuvo B., Totaro M., Baggiani A., Privitera G. Detection and decontamination of Mycobacterium chimaera and other non-tuberculosis mycobacteria in heater-cooler devices used in cardiopulmonary bypass: A Manufacturer and National Guidelines Summary, and a potential resolution to the problem requiring further investigation. Perfusion. 2020;35:190–196. PubMed
Palomino J.C., Portaels F. Effects of decontamination methods and culture conditions on viability of Mycobacterium ulcerans in the BACTEC system. J. Clin. Microbiol. 1998;36:402–408. doi: 10.1128/JCM.36.2.402-408.1998. PubMed DOI PMC
Portaels F., De Muynec A., Sylla M.P. Selective isolation of mycobacteria from soil: A statistical analysis approach. J. Gen. Microbiol. 1988;134:849–855. doi: 10.1099/00221287-134-3-849. PubMed DOI
Allen B.W. Comparison of three methods for decontamination of faeces for isolation of Mycobacterium tuberculosis. Tubercle. 1991;72:214–217. doi: 10.1016/0041-3879(91)90011-G. PubMed DOI
Sattar A., Zakaria Z., Abu J., Aziz S.A., Gabriel R.P. Evaluation of six decontamination procedures for isolation of Mycobacterium avium complex from avian feces. PLoS ONE. 2018;13:e0202034. doi: 10.1371/journal.pone.0202034. PubMed DOI PMC
Neumann M., Schulze-Robbecke R., Hagenau C., Behringer K. Comparison of methods for isolation of mycobacteria from water. Appl. Environ. Microbiol. 1997;63:547–552. doi: 10.1128/aem.63.2.547-552.1997. PubMed DOI PMC
Iivanainen E., Martikainen P.J., Vaananen P., Katila M.L. Environmental factors affecting the occurrence of mycobacteria in brook sediments. J. Appl. Microbiol. 1999;86:673–681. doi: 10.1046/j.1365-2672.1999.00711.x. PubMed DOI
Falkinham J.O., 3rd Current epidemiologic trends of the nontuberculous mycobacteria (NTM) Curr. Environ. Health Rep. 2016;3:161–167. doi: 10.1007/s40572-016-0086-z. PubMed DOI
Honda J.R., Hess T., Carlson R., Kandasamy P., Nieto Ramirez L.M., Norton G.J., Virdi R., Islam M.N., Mehaffy C., Hasan N.A., et al. Nontuberculous mycobacteria show differential infectivity and use phospholipids to antagonize LL-37. Am. J. Respir. Cell. Mol. Biol. 2020;62:354–363. doi: 10.1165/rcmb.2018-0278OC. PubMed DOI PMC
Stephenson D., Perry A., Nelson A., Robb A.E., Thomas M.F., Bourke S.J., Perry J.D., Jones A.L. Decontamination strategies used for AFB culture significantly reduce the viability of Mycobacterium abscessus complex in sputum samples from patients with cystic fibrosis. Microorganisms. 2021;9:1597. doi: 10.3390/microorganisms9081597. PubMed DOI PMC
Alexander K.J., Furlong J.L., Baron J.L., Rihs J.D., Stephenson D., Perry J.D., Stout J.E. Evaluation of a new culture medium for isolation of nontuberculous mycobacteria from environmental water samples. PLoS ONE. 2021;16:e0247166. doi: 10.1371/journal.pone.0247166. PubMed DOI PMC
A Rare Case of Osteomyelitis of an Ankle Caused by Mycobacterium chelonae
Nontuberculous Mycobacteria: Ecology and Impact on Animal and Human Health