Nontuberculous Mycobacteria Prevalence in Bats' Guano from Caves and Attics of Buildings Studied by Culture and qPCR Examinations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-12719S
Czech Science Foundation
PubMed
34835362
PubMed Central
PMC8620717
DOI
10.3390/microorganisms9112236
PII: microorganisms9112236
Knihovny.cz E-zdroje
- Klíčová slova
- microchiroptera, mycobacteria other than tuberculosis (MOTT), non-tuberculous mycobacteria (NTM), risk groups of microorganisms, saprophytic environmental mycobacteria,
- Publikační typ
- časopisecké články MeSH
A total of 281 guano samples were collected from caves (N = 181) in eight European countries (Bulgaria, Czech Republic, France, Hungary, Italy, Romania, Slovakia and Slovenia) and attics in the Czech R. (N = 100). The correlation of detection of mycobacteria between Ziehl-Neelsen (ZN) microscopy and culture examination and qPCR was strong. ZN microscopy was positive in guano from caves (58.6%) more than double than positivity in guano from attics (21.0%; p < 0.01). From 89 mycobacterial isolates (73 isolates from cave guano and 16 isolates from attics' guano), 68 (76.4%) isolates of 19 sp., ssp. and complex were identified as members of three Groups (M. fortuitum, M.chelonae, and M. mucogenicum) and four complexes (M. avium, M. terrae, M.vaccae, and M.smegmatis). A total of 20 isolates (22.5%) belonged to risk group 1 (environmental saprophytes), 48 isolates (53.9%) belonged to risk group 2 (potential pathogens), and none of the isolates belonged to risk group 3 (obligatory pathogens). When comparing bat guano collected from caves and attics, differences (p < 0.01; Mann-Whitney test) were observed for the electrical conductivity, total carbon, total organic, and total inorganic carbon. No difference (p > 0.05; Mann-Whitney test) was found for pH and oxidation-reduction potential parameters.
Central Bohemian Archaeological Heritage Institute Nad Olsinami 448 3 100 00 Prague Czech Republic
Faculty of AgriSciences Mendel University in Brno Zemedelska 1 1665 613 00 Brno Czech Republic
Museum Blanenska Zamek 1 1 678 01 Blansko Czech Republic
Public Health Institute Ostrava Partyzanske Nam 7 702 00 Ostrava Czech Republic
Veterinary Research Institute v v i Hudcova 70 621 00 Brno Czech Republic
Zobrazit více v PubMed
Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006;19:531–545. doi: 10.1128/CMR.00017-06. PubMed DOI PMC
Muhldorfer K. Bats and bacterial pathogens: A review. Zoonoses Public Health. 2013;60:93–103. doi: 10.1111/j.1863-2378.2012.01536.x. PubMed DOI
Yon L., Duff J.P., Agren E.O., Erdelyi K., Ferroglio E., Godfroid J., Hars J., Hestvik G., Horton D., Kuiken T., et al. Recent changes in infectious diseases in European wildlife. J. Wildl. Dis. 2019;55:3–43. doi: 10.7589/2017-07-172. PubMed DOI
Fagre A.C., Kading R.C. Can bats serve as reservoirs for arboviruses? Viruses. 2019;11:215. doi: 10.3390/v11030215. PubMed DOI PMC
Letko M., Seifert S.N., Olival K.J., Plowright R.K., Munster V.J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 2020;18:461–471. doi: 10.1038/s41579-020-0394-z. PubMed DOI PMC
Llanos-Soto S., Gonzalez-Acuna D. Knowledge about bacterial and viral pathogens present in wild mammals in Chile: A systematic review. Rev. Chil. Infectol. 2019;36:195–218. doi: 10.4067/S0716-10182019000200195. PubMed DOI
Shipley R., Wright E., Selden D., Wu G., Aegerter J., Fooks A.R., Banyard A.C. Bats and viruses: Emergence of novel Lyssaviruses and association of bats with viral zoonoses in the EU. Trop. Med. Infect. Dis. 2019;4:31. doi: 10.3390/tropicalmed4010031. PubMed DOI PMC
Di Salvo A.F., Ajello L., Palmer J.W., Winkler W.G. Isolation of Histoplasma capsulatum from Arizona bats. Am. J. Epidemiol. 1969;89:606–614. doi: 10.1093/oxfordjournals.aje.a120973. PubMed DOI
De Perio M.A., Benedict K., Williams S.L., Niemeier-Walsh C., Green B.J., Coffey C., Di Giuseppe M., Toda M., Park J.H., Bailey R.L., et al. Occupational histoplasmosis: Epidemiology and prevention measures. J. Fungi. 2021;7:510. doi: 10.3390/jof7070510. PubMed DOI PMC
McClean M.C.W., Bhattacharyya T., Mertens P., Murphy N., Gilleman Q., Gustin Y., Zeippen N., Xavier S.C.C., Jansen A.M., Miles M.A. A lineage-specific rapid diagnostic test (Chagas Sero K-SeT) identifies Brazilian Trypanosoma cruzi II/V/VI reservoir hosts among diverse mammalian orders. PLoS ONE. 2020;15:e0227828. doi: 10.1371/journal.pone.0227828. PubMed DOI PMC
Mulec J., Dietersdorfer E., Ustunturk-Onan M., Walochnik J. Acanthamoeba and other free-living amoebae in bat guano, an extreme habitat. Parasitol. Res. 2016;115:1375–1383. doi: 10.1007/s00436-015-4871-7. PubMed DOI
Asante J., Noreddin A., El Zowalaty M.E. Systematic review of important bacterial zoonoses in Africa in the last decade in light of the ‘One Health’ Concept. Pathogens. 2019;8:50. doi: 10.3390/pathogens8020050. PubMed DOI PMC
Afonso E., Goydadin A.C. Molecular detection of Anaplasma phagocytophilum DNA in the lesser horseshoe bat (Rhinolophus hipposideros) guano. Epidemiol. Infect. 2018;146:1253–1258. doi: 10.1017/S0950268818001279. PubMed DOI PMC
Kosoy M., Bai Y., Lynch T., Kuzmin I.V., Niezgoda M., Franka R., Agwanda B., Breiman R.F., Rupprecht C.E. Bartonella spp. in bats, Kenya. Emerg. Infect. Dis. 2010;16:1875–1881. doi: 10.3201/eid1612.100601. PubMed DOI PMC
Lei B.R., Olival K.J. Contrasting patterns in mammal-bacteria coevolution: Bartonella and Leptospira in bats and rodents. PLoS Negl. Trop. Dis. 2014;8:e2738. doi: 10.1371/journal.pntd.0002738. PubMed DOI PMC
Veikkolainen V., Vesterinen E.J., Lilley T.M., Pulliainen A.T. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerg. Infect. Dis. 2014;20:960–967. doi: 10.3201/eid2006.130956. PubMed DOI PMC
Corduneanu A., Sándor A.D., Ionica A.M., Hornok S., Leitner N., Bago Z., Stefke K., Fuehrer H.P., Mihalca A.D. Bartonella DNA in heart tissues of bats in central and eastern Europe and a review of phylogenetic relations of bat-associated bartonellae. Parasit. Vectors. 2018;11:489. doi: 10.1186/s13071-018-3070-7. PubMed DOI PMC
Szubert-Kruszynska A., Stanczak J., Cieniuch S., Podsiadły E., Postawa T., Michalik J. Bartonella and Rickettsia infections in haematophagous Spinturnix myoti mites (Acari: Mesostigmata) and their bat host, Myotis myotis (Yangochiroptera: Vespertilionidae), from Poland. Microb. Ecol. 2019;77:759–768. doi: 10.1007/s00248-018-1246-5. PubMed DOI PMC
Ferreira M.S., Guterres A., Rozental T., Novaes R.L.M., Vilar E.M., Oliveira R.C., Fernandes J., Forneas D., Junior A.A., Brandão M.L., et al. Coxiella and Bartonella spp. in bats (Chiroptera) captured in the Brazilian Atlantic Forest biome. BMC Vet. Res. 2018;14:279. doi: 10.1186/s12917-018-1603-0. PubMed DOI PMC
Nowakiewicz A., Zieba P., Gnat S., Osinska M., Lagowski D., Kosior-Korzecka U., Puzio I., Krol J. Analysis of the occurrence and molecular characteristics of drug-resistant strains of Enterococcus faecalis isolated from the gastrointestinal tract of insectivorous bat species in Poland: A possible essential impact on the spread of drug resistance? Environ. Pollut. 2021;269:116099. doi: 10.1016/j.envpol.2020.116099. PubMed DOI
Seidlova V., Nemcova M., Pikula J., Bartonicka T., Ghazaryan A., Heger T., Kokurewicz T., Orlov O.L., Patra S., Piacek V., et al. Urinary shedding of leptospires in Palearctic bats. Transbound Emerg. Dis. 2021 doi: 10.1111/tbed.14011. online ahead of print. PubMed DOI
Volokhov D.V., Becker D.J., Bergner L.M., Camus M.S., Orton R.J., Chizhikov V.E., Altizer S.M., Streicker D.G. Novel hemotropic mycoplasmas are widespread and genetically diverse in vampire bats. Epidemiol. Infect. 2017;145:3154–3167. doi: 10.1017/S095026881700231X. PubMed DOI PMC
Millan J., Cevidanes A., Sacristan I., Alvarado-Rybak M., Sepulveda G., Ramos-Mella C.A., Lison F. Detection and characterization of hemotropic mycoplasmas in bats in Chile. J. Wildl. Dis. 2019;55:977–981. doi: 10.7589/2018-12-290. PubMed DOI
Blehert D.S., Maluping R.P., Green D.E., Berlowski-Zier B.M., Ballmann A.E., Langenberg J.A. Acute pasteurellosis in wild big brown bats (Eptesicus fuscus) J. Wildl. Dis. 2014;50:136–139. doi: 10.7589/2012-02-063. PubMed DOI
Vandzurova A., Backor P., Javorsky P., Pristas P. Staphylococcus nepalensis in the guano of bats (Mammalia) Vet. Microbiol. 2013;164:116–121. doi: 10.1016/j.vetmic.2013.01.043. PubMed DOI
De Leon M.P., Park A.Y., Montecillo A.D., Siringan M.A.T., Rosana A.R.R., Kim S.G. Near-complete genome sequences of Streptomyces sp. Strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines. Microbiol. Resour. Announc. 2018;7:e00904-18. doi: 10.1128/MRA.00904-18. PubMed DOI PMC
Gerbacova K., Malinicova L., Kiskova J., Maslisova V., Uhrin M., Pristas P. The faecal microbiome of building-dwelling insectivorous bats (Myotis myotis and Rhinolophus hipposideros) also contains antibiotic-resistant bacterial representatives. Curr. Microbiol. 2020;77:2333–2344. doi: 10.1007/s00284-020-02095-z. PubMed DOI
Pavlik I., Falkinham J. The occurrence of pathogenic and potentially pathogenic mycobacteria in animals and the role of the environment in the spread of infection. Chapter 6. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 199–281.
Scott H. Report on the deaths occurring in the society’s gardens during the year 1925. Proc. Zool. Soc. Lond. 1926;96:231–244. doi: 10.1111/j.1096-3642.1926.tb01545.x. DOI
Griffith A. Tuberculosis in captive wild animals. J. Hyg. 1928;29:198–218. doi: 10.1017/S0022172400009542. PubMed DOI PMC
Hamerton A. Report on the deaths occurring in the Society’s Gardens during the year 1930. Proc. Zool. Soc. Lond. 1931;101:527–555. doi: 10.1111/j.1096-3642.1931.tb01028.x. DOI
Runyon E.H. Pathogenic mycobacteria. Adv. Tuberc. Res. 1965;21:235–287. PubMed
Clark H.F., Shepard C.C. Effect of environmental temperatures on infection with Mycobacterium marinum (balnei) of mice and a number of poikilothermic species. J. Bacteriol. 1963;86:1057–1069. doi: 10.1128/jb.86.5.1057-1069.1963. PubMed DOI PMC
Church J.C., Griffin E.R. Mycobacterium buruli lesions in the fruit bat web. J. Pathol. Bacteriol. 1968;96:508–512. doi: 10.1002/path.1700960234. PubMed DOI
Buckle G. Notes on Mycobacterium ulcerans. ANZ J. Surg. 1972;41:320–323. doi: 10.1111/j.1445-2197.1969.tb06536.x. PubMed DOI
Pavlik I., Falkinham J., Kazda J. Environments providing favourable conditions for the multiplication and transmission of mycobacteria. Chapter 5. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 89–197.
De Mandal S., Panda A.K., Lalnunmawii E., Bisht S.S., Kumar N.S. Illumina-based analysis of bacterial community in Khuangcherapuk cave of Mizoram, Northeast India. Genom. Data. 2015;5:13–14. doi: 10.1016/j.gdata.2015.04.023. PubMed DOI PMC
Banskar S., Bhute S.S., Suryavanshi M.V., Punekar S., Shouche Y.S. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci. Rep. 2016;6:36948. doi: 10.1038/srep36948. PubMed DOI PMC
De Mandal S., Zothansanga, Panda A.K., Bisht S.S., Senthil Kumar N. First report of bacterial community from a bat guano using Illumina next-generation sequencing. Genom. Data. 2015;4:99–101. doi: 10.1016/j.gdata.2015.04.001. PubMed DOI PMC
De Leon M.P., Montecillo A.D., Pinili D.S., Siringan M.A.T., Park D.S. Bacterial diversity of bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines: A first report on the metagenome of Philippine bat guano. PLoS ONE. 2018;13:e0200095. doi: 10.1371/journal.pone.0200095. PubMed DOI PMC
Yuan Z., Yu Y., Wang Y., Bu Y., Niu H. Microbial diversity in the gastrointestinal tract of a bat, Hypsugo alaschanicus. Pak. J. Zool. 2019;51:1807–1813. doi: 10.17582/journal.pjz/2019.51.5.1807.1813. DOI
Selvin J., Lanong S., Syiem D., De Mandal S., Kayang H., Kumar N.S., Kiran G.S. Culture-dependent and metagenomic analysis of lesser horseshoe bats’ gut microbiome revealing unique bacterial diversity and signatures of potential human pathogens. Microb. Pathog. 2019;137:103675. doi: 10.1016/j.micpath.2019.103675. PubMed DOI PMC
Modra H., Bartos M., Hribova P., Ulmann V., Hubelova D., Konecny O., Gersl M., Kudelka J., Voros D., Pavlik I. Detection of mycobacteria in the environment of the Moravian Karst (Bull Rock Cave and the relevant water catchment area): The impact of water sediment, earthworm castings and bat guano. Vet. Med.-Czech. 2017;62:153–168. doi: 10.17221/126/2016-VETMED. DOI
LPSN: List of Prokaryotic Names with Standing in Nomenclature. [(accessed on 25 October 2021)]. Available online: https://lpsn.dsmz.de/
European Union Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. Off. J. Eur. Communities. 2000;L262:21–45.
Chronakova A., Horak A., Elhottova D., Kristufek V. Diverse archaeal community of a bat guano pile in Domica Cave (Slovak Karst, Slovakia) Folia Microbiol. 2009;54:436–446. doi: 10.1007/s12223-009-0061-2. PubMed DOI
D’Angeli I.M., Serrazanetti D.I., Montanari C., Vannini L., Gardini F., De Waele J. Geochemistry and microbial diversity of cave waters in the gypsum karst aquifers of Emilia Romagna region, Italy. Sci. Total Environ. 2017;598:538–552. doi: 10.1016/j.scitotenv.2017.03.270. PubMed DOI
Zukal J., Berkova H., Rehak Z. Activity and shelter selection by Myotis myotis and Rhinolophus hipposideros hibernating in the Katerinska Cave (Czech Republic) Mammal. Biol. 2005;70:271–281. doi: 10.1016/j.mambio.2005.03.003. DOI
Ulmann V., Kracalikova A., Dziedzinska R. Mycobacteria in water used for personal hygiene in heavy industry and collieries: A potential risk for employees. Int. J. Environ. Res. Public Health. 2015;12:2870–2877. doi: 10.3390/ijerph120302870. PubMed DOI PMC
Ulmann V., Modra H., Babak V., Weston R.T., Pavlik I. Recovery of mycobacteria from heavily contaminated environmental matrices. Microorganism. 2021;9:2178. doi: 10.3390/microorganisms9102178. PubMed DOI PMC
Slana I., Kaevska M., Kralik P., Horvathova A., Pavlik I. Distribution of Mycobacterium avium subsp. avium and M. a. hominissuis in artificially infected pigs studied by culture and IS901 and IS1245 quantitative real time PCR. Vet. Microbiol. 2010;26:437–443. doi: 10.1016/j.vetmic.2010.02.024. PubMed DOI
De Vaus D. Survey in Social Research. 5th ed. Rutledge; London, UK: 2002. 422p
Shannon C.E., Wiener W. The Mathematical Theory of Communication. University of Illinois Press; Urbana, IL, USA: 1949. 177p
Davis J.J., Gulson B.L. Ceiling (attic) dust: A “museum” of contamination and potential hazard. Environ. Res. 2005;99:177–194. doi: 10.1016/j.envres.2004.10.011. PubMed DOI
Wheeler A.J., Jones P.J., Reisen F., Melody S.M., Williamson G., Strandberg B., Hinwood A., Almerud P., Blizzard L., Chappell K., et al. Roof cavity dust as an exposure proxy for extreme air pollution events. Chemosphere. 2020;244:125537. doi: 10.1016/j.chemosphere.2019.125537. PubMed DOI
Varghese B., Al-Hajoj S. A global update on rare non-tuberculous mycobacteria in humans: Epidemiology and emergence. Int. J. Tuberc. Lung. Dis. 2020;24:214–223. doi: 10.5588/ijtld.19.0194. PubMed DOI
McAney C.M., Fairley J.S. Analysis of the diet of the lesser horseshoe bat Rhinolophus hipposideros in the West of Ireland. J. Zool. 1989;217:491–498. doi: 10.1111/j.1469-7998.1989.tb02504.x. DOI
Bono S., Toffoli R. Diet of Rhinolophus hipposideros during breeding season in the south-western Italian Alps. Vespertilio. 2016;18:29–39.
Aldasoro M., Garin I., Vallejo N., Baroja U., Arrizabalaga-Escudero A., Goiti U., Aihartza J. Gaining ecological insight on dietary allocation among horseshoe bats through molecular primer combination. PLoS ONE. 2019;14:e022008. doi: 10.1371/journal.pone.0220081. PubMed DOI PMC
Siemers B.M., Guttinger R. Prey conspicuousness can explain apparent prey selectivity. Curr. Biol. 2006;16:R157–R159. doi: 10.1016/j.cub.2006.02.056. PubMed DOI
Arlettaz R., Perrin N., Hausser J. Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. J. Anim. Ecol. 1997;66:897–911. doi: 10.2307/6005. DOI
Pereira M.J.R., Rebelo H., Rainho A., Palmeirim J.M. Prey selection by Myotis myotis (Vespertilionidae) in a Mediterranean Region. Acta Chiropterol. 2002;4:183–193. doi: 10.3161/001.004.0207. DOI
Strobel S., Roswag A., Becker N.I., Trenczek T.E., Encarnacao J.A. Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase. PLoS ONE. 2013;8:e72770. doi: 10.1371/journal.pone.0072770. PubMed DOI PMC
Kaya M., Seyyar O., Baran T., Turkes T. Bat guano as new and attractive chitin and chitosan source. Front. Zool. 2014;11:59. doi: 10.1186/s12983-014-0059-8. DOI
Zingue D., Bouam A., Tian R.B.D., Drancourt M. Buruli ulcer, a prototype for ecosystem-related infection, caused by Mycobacterium ulcerans. Clin. Microbiol. Rev. 2017;31:e00045-17. PubMed PMC
Sanhueza D., Chevillon C., Colwell R., Babonneau J., Marion E., Marsollier L., Guegan J.F. Chitin promotes Mycobacterium ulcerans growth. FEMS Microbiol. Ecol. 2016;92:fiw067. doi: 10.1093/femsec/fiw067. PubMed DOI
Sanhueza D., Chevillon C., Bouzinbi N., Godreuil S., Guegan J.F. Chitin increases Mycobacterium ulcerans growth in acidic environments. Microbes Environ. 2018;33:234–237. doi: 10.1264/jsme2.ME17160. PubMed DOI PMC
Talamantes D., Biabini N., Dang H., Abdoun K., Berlemont R. Natural diversity of cellulases, xylanases, and chitinases in bacteria. Biotechnol. Biofuels. 2016;9:133. doi: 10.1186/s13068-016-0538-6. PubMed DOI PMC
Fischer O., Matlova L., Dvorska L., Svastova P., Bartl J., Melicharek I., Weston R.T., Pavlik I. Diptera as vectors of mycobacterial infections in cattle and pigs. Med. Vet. Entomol. 2001;15:208–211. doi: 10.1046/j.1365-2915.2001.00292.x. PubMed DOI
Fischer O.A., Matlova L., Bartl J., Dvorska L., Svastova P., du Maine R., Melicharek I., Bartos M., Pavlik I. Earthworms (Oligochaeta, Lumbricidae) and mycobacteria. Vet. Microbiol. 2003;91:325–338. doi: 10.1016/S0378-1135(02)00302-4. PubMed DOI
Fischer O.A., Matlova L., Dvorska L., Svastova P., Pavlik I. Nymphs of the Oriental cockroach (Blatta orientalis) as passive vectors of causal agents of avian tuberculosis and paratuberculosis. Med. Vet. Entomol. 2003;17:145–150. doi: 10.1046/j.1365-2915.2003.00417.x. PubMed DOI
Fischer O.A., Matlova L., Dvorska L., Svastova P., Bartl J., Weston R.T., Pavlik I. Blowflies Calliphora vicina and Lucilia sericata as passive vectors of Mycobacterium avium subsp. avium, M. a. paratuberculosis and M. a. hominissuis. Med. Vet. Entomol. 2004;18:116–122. doi: 10.1111/j.0269-283X.2004.00477.x. PubMed DOI
Fischer O.A., Matlova L., Dvorska L., Svastova P., Peral D.L., Weston R.T., Bartos M., Pavlik I. Beetles as possible vectors of infections caused by Mycobacterium avium species. Vet. Microbiol. 2004;102:247–255. doi: 10.1016/j.vetmic.2004.06.005. PubMed DOI
Fischer O.A., Matlova L., Dvorska L., Svastova P., Bartos M., Weston R.T., Kopecna M., Trcka I., Pavlik I. Potential risk of Mycobacterium avium subspecies paratuberculosis spread by syrphid flies in infected cattle farms. Med. Vet. Entomol. 2005;19:360–366. doi: 10.1111/j.1365-2915.2005.00585.x. PubMed DOI
Fischer O.A., Matlova L., Dvorska L., Svastova P., Bartos M., Weston R.T., Pavlik I. Various stages in the life cycle of syrphid flies (Eristalis tenax; Diptera: Syrphidae) as potential mechanical vectors of pathogens causing mycobacterial infections in pig herds. Folia Microbiol. 2006;51:147–153. doi: 10.1007/BF02932171. PubMed DOI
Dvorska L., Matlova L., Ayele W.Y., Fischer O.A., Amemori T., Weston R.T., Alvarez J., Beran V., Moravkova M., Pavlik I. Avian tuberculosis in naturally infected captive water birds of the Ardeidae and Threskiornithidae families studied by serotyping, IS901 RFLP typing and virulence for poultry. Vet. Microbiol. 2007;119:366–374. doi: 10.1016/j.vetmic.2006.09.010. PubMed DOI
Kaevska M., Slana I., Kralik P., Reischl U., Orosova J., Holcikova A., Pavlik I. “Mycobacterium avium subsp. hominissuis” in neck lymph nodes of children and their environment examined by culture and triplex quantitative real time PCR. J. Clin. Microbiol. 2011;49:167–172. doi: 10.1128/JCM.00802-10. PubMed DOI PMC
Krizova K., Matlova L., Horvathova A., Moravkova M., Beran V., Boisselet T., Babak V., Slana I., Pavlik I. Mycobacteria in the environment of pig farms in the Czech Republic between 2003 and 2007. Vet. Med.-Czech. 2010;55:55–69. doi: 10.17221/85/2009-VETMED. DOI
Matlova L., Dvorska L., Bartl J., Bartos M., Ayele W.Y., Alexa M., Pavlik I. Mycobacteria isolated from the environment of pig farms in the Czech Republic during the years 1996 to 2002. Vet. Med.-Czech. 2003;48:343–357. doi: 10.17221/5789-VETMED. DOI
Moravkova M., Lamka J., Kriz P., Pavlik I. The presence of Mycobacterium avium subsp. avium in common pheasants (Phasianus colchicus) living in captivity and in other birds, vertebrates, non-vertebrates and the environment. Vet. Med.-Czech. 2011;56:333–343. doi: 10.17221/1588-VETMED. DOI
Zhu J., Liu R., Cao N., Yu J., Liu X., Yu Z. Mycobacterial metabolic characteristics in a water meter biofilm revealed by metagenomics and metatranscriptomics. Water Res. 2019;153:315–323. doi: 10.1016/j.watres.2019.01.032. PubMed DOI
Pavlik I. Status of bovine tuberculosis control in countries of Central Europe and countries of the former Soviet Union. Chapter 32. In: Thoen C.O., Steele J.H., Kaneene J.B., editors. Zoonotic Tuberculosis: Mycobacterium Bovis and Other Pathogenic Mycobacteria. 3rd ed. Wiley-Blackwell; Chichester, UK: 2014. pp. 369–382.
Hromas J. Caves. In: Mackovcin P., Sedlacek M., editors. Protected Areas in the Czech Republic. 1st ed. Volume XIV. Agentura Ochrany Prirody a Krajiny CR a EkoCentrum Brno; Praha, Czech Republic: 2009. 608p. (In Czech)
George K.L., Parker B.C., Gruft H., Falkinham J.O., 3rd Epidemiology of infection by nontuberculous mycobacteria. II. Growth and survival in natural waters. Am. Rev. Respir. Dis. 1980;122:89–94. PubMed
Kazda J. The Ecology of Mycobacteria. Kluwer Academic Publishers; Dordrecht, Germany: Boston, MA, USA: London, UK: 2000. 72p
Bartonicka T., Ruzickova L. Bat bugs (Cimex pipistrelli) and their impact on non-dwelling bats. Parasitol. Res. 2012;111:1233–1238. doi: 10.1007/s00436-012-2957-z. PubMed DOI
Portaels F., Pattyn S.R. Growth of mycobacteria in relation to the pH of the medium. Ann. Microbiol. 1982;133:213–221. PubMed
Cox R.A., Garcia M.J. Adaptation of mycobacteria to growth conditions: A theoretical analysis of changes in gene expression revealed by microarrays. PLoS ONE. 2013;8:e59883. doi: 10.1371/journal.pone.0059883. PubMed DOI PMC
Kannan N., Lai Y.P., Haug M., Lilleness M.K., Bakke S.S., Marstad A., Hov H., Naustdal T., Afset J.E., Ioerger T.R., et al. Genetic variation/evolution and differential host responses resulting from in-patient adaptation of Mycobacterium avium. Infect. Immun. 2019;87:e00323-18. doi: 10.1128/IAI.00323-18. PubMed DOI PMC
Yano H., Iwamoto T., Nishiuchi Y., Nakajima C., Starkova D.A., Mokrousov I., Narvskaya O., Yoshida S., Arikawa K., Nakanishi N., et al. Population structure and local adaptation of MAC lung disease agent Mycobacterium avium subsp. hominissuis. Genome. Biol. Evol. 2017;9:2403–2417. doi: 10.1093/gbe/evx183. PubMed DOI PMC
Lipsky B.A., Gates J., Tenover F.C., Plorde J.J. Factors affecting the clinical value of microscopy for acid-fast bacilli. Rev. Infect. Dis. 1984;6:214–622. doi: 10.1093/clinids/6.2.214. PubMed DOI
Radomski N., Lucas F.S., Moilleron R., Cambau E., Haenn S., Moulin L. Development of a real-time qPCR method for detection and enumeration of Mycobacterium spp. in surface water. Appl. Environ. Microbiol. 2010;76:7348–7351. doi: 10.1128/AEM.00942-10. PubMed DOI PMC
Stephenson D., Perry A., Nelson A., Robb A.E., Thomas M.F., Bourke S.J., Perry J.D., Jones A.L. Decontamination strategies used for AFB culture significantly reduce the viability of Mycobacterium abscessus complex in sputum samples from patients with cystic fibrosis. Microorganisms. 2021;9:1597. doi: 10.3390/microorganisms9081597. PubMed DOI PMC
Nontuberculous Mycobacteria: Ecology and Impact on Animal and Human Health