River Sediments Downstream of Villages in a Karstic Watershed Exhibited Increased Numbers and Higher Diversity of Nontuberculous Mycobacteria

. 2023 Dec 16 ; 87 (1) : 15. [epub] 20231216

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38102317
Odkazy

PubMed 38102317
PubMed Central PMC10724323
DOI 10.1007/s00248-023-02326-3
PII: 10.1007/s00248-023-02326-3
Knihovny.cz E-zdroje

The impact of residential villages on the nontuberculous mycobacteria (NTM) in streams flowing through them has not been studied in detail. Water and sediments of streams are highly susceptible to anthropogenic inputs such as surface water flows. This study investigated the impact of seven residential villages in a karst watershed on the prevalence and species spectrum of NTM in water and sediments. Higher NTM species diversity (i.e., 19 out of 28 detected) was recorded downstream of the villages and wastewater treatment plants (WWTPs) compared to sampling sites upstream (i.e., 5). Significantly, higher Zn and lower silicon concentrations were detected in sediments inside the village and downstream of the WWTP's effluents. Higher phosphorus concentration in sediment was downstream of WWTPs compared to other sampling sites. The effluent from the WWTPs had a substantial impact on water quality parameters with significant increases in total phosphorus, anions (Cl-and N-NH3-), and cations (Na+ and K+). The results provide insights into NTM numbers and species diversity distribution in a karst watershed and the impact of urban areas. Although in this report the focus is on the NTM, it is likely that other water and sediment microbes will be influenced as well.

Zobrazit více v PubMed

Pavlik I, Falkinham J (2009) The occurrence of pathogenic and potentially pathogenic mycobacteria in animals and the role of the environment in the spread of infection, Chapter 6. In: Kazda J, Pavlik I, Falkinham IIIJO, Hruska K (eds) The ecology of mycobacteria: Impact on animal’s and human’s health. Springer, Dordrecht, pp 199–281

Falkinham JOIII. Ecology of nontuberculous mycobacteria. Microorganisms. 2021;9(11):2262. doi: 10.3390/microorganisms9112262. PubMed DOI PMC

Walsh CM, Gebert MJ, Delgado-Baquerizo M, Maestre FT, Fierer N. A global survey of mycobacterial diversity in soil. Appl Environ Microbiol. 2019;85(17):e01180–e1219. doi: 10.1128/AEM.01180-19. PubMed DOI PMC

Pavlik I, Ulmann V, Hubelova D, Weston RT. Nontuberculous mycobacteria as sapronoses: a review. Microorganisms. 2022;10:1345. doi: 10.3390/microorganisms10071345. PubMed DOI PMC

Hubelova D, Ulmann V, Mikuska P, Licbinsky R, Alexa L, Modra H, Gersl M, Babak V, Weston RT, Pavlik I. Nontuberculous mycobacteria prevalence in aerosol and spiders’ webs in karst caves: low risk for speleotherapy. Microorganisms. 2021;9:2573. doi: 10.3390/microorganisms9122573. PubMed DOI PMC

Dong P, Cui Q, Fang T, Huang Y, Wang H. Occurrence of antibiotic resistance genes and bacterial pathogens in water and sediment in urban recreational water. J Environ Sci (China) 2019;77:65–74. doi: 10.1016/j.jes.2018.06.011. PubMed DOI

Virdi R, Lowe ME, Norton GJ, Dawrs SN, Hasan NA, Epperson LE, Glickman CM, Chan ED, Strong M, Crooks JL, Honda JR. Lower recovery of nontuberculous mycobacteria from outdoor Hawai’i environmental water biofilms compared to indoor samples. Microorganisms. 2021;9(2):224. doi: 10.3390/microorganisms9020224. PubMed DOI PMC

Roguet A, Therial C, Saad M, Boudahmane L, Moulin L, Lucas FS. High mycobacterial diversity in recreational lakes. Antonie Van Leeuwenhoek. 2016;109:619–631. doi: 10.1007/s10482-016-0665-x. PubMed DOI

Chen X, Wang Y, Li W, Zhao X, Lu Y, Yu Y, Chen S, Ding Z. Microbial contamination in distributed drinking water purifiers induced by water stagnation. Environ Res. 2020;188:109715. doi: 10.1016/j.envres.2020.109715. PubMed DOI

Moreno-Mesonero L, Ferrus MA, Moreno Y. Determination of the bacterial microbiome of free-living amoebae isolated from wastewater by 16S rRNA amplicon-based sequencing. Environ Res. 2020;190:109987. doi: 10.1016/j.envres.2020.109987. PubMed DOI

Falkinham JOIII. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol. 2009;107:356–367. doi: 10.1111/j.1365-2672.2009.04161.x. PubMed DOI

Falkinham JOIII. Current epidemiologic trends of the nontuberculous mycobacteria (NTM) Curr Environ Health Rep. 2016;3:161–167. doi: 10.1007/s40572-016-0086-z. PubMed DOI

Roguet A, Therial C, Catherine A, Bressy A, Varrault G, Bouhdamane L, Tran V, Lemaire BJ, Vincon-Leite B, Saad M, Moulin L, Lucas FS. Importance of local and regional scales in shaping mycobacterial abundance in freshwater lakes. Microb Ecol. 2018;75(4):834–846. doi: 10.1007/s00248-017-1088-6. PubMed DOI

Vega L, Jaimes J, Morales D, Martínez D, Cruz-Saavedra L, Muñoz M, Ramírez JD. Microbial communities’ characterization in urban recreational surface waters using next generation sequencing. Microb Ecol. 2021;81(4):847–863. doi: 10.1007/s00248-020-01649-9. PubMed DOI

Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29–63. doi: 10.1146/annurev.bi.64.070195.000333. PubMed DOI

Jesenska A, Damborsky J (2009) Degradation of organic compounds by mycobacteria. In: Kazda J, Pavlik I, Falkinham IIIJO, Hruska K (eds) The ecology of mycobacteria: impact on animal’s and human’s health. Springer, Dordrecht, pp 314–326

Pontiroli A, Khera TT, Oakley BB, Mason S, Dowd SE, Travis ER, Erenso G, Aseffa A, Courtenay O, Wellington EMH. Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity. PLoS ONE. 2013;8:e68648. doi: 10.1371/journal.pone.0068648. PubMed DOI PMC

Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis. 2016;45:123–134. doi: 10.1016/j.ijid.2016.03.006. PubMed DOI

Totaro M, Casini B, Valentini P, Miccoli M, Lopalco PL, Baggiani A. Assessing natural mineral water microbiology quality in the absence of cultivable pathogen bacteria. J Water Health. 2018;16:425–434. doi: 10.2166/wh.2018.183. PubMed DOI

Varghese B, Al-Hajoj S. A global update on rare non-tuberculous mycobacteria in humans: epidemiology and emergence. Int J Tuberc Lung Dis. 2020;24:214–223. doi: 10.5588/ijtld.19.0194. PubMed DOI

Rusterholtz KJ, Mallory LM. Density, activity, and diversity of bacteria indigenous to a karstic aquifer. Microb Ecol. 1994;28(1):79–99. doi: 10.1007/BF00170249. PubMed DOI

Heinz B, Birk S, Liedl R, Geyer T, Straub KL, Andersen J, Bester K, Kappler A. Water quality deterioration at karst spring (Gallusquelle, Germany) due to combined sewer overflow: evidence of bacterial and micro-pollutant contamination. Environ Geol. 2009;57:797–808. doi: 10.1007/s00254-008-1359-0. DOI

Chiffre A, Degiorgi F, Bulete A, Spinner L, Badot PM. Occurrence of pharmaceuticals in WWTP effluents and their impact in a karstic rural catchment of Eastern France. Environ Sci Pollut Res. 2016;23:25427–25441. doi: 10.1007/s11356-016-7751-5. PubMed DOI

Gutierrez M, Wu SS, Rodriguez JR, Jones AD, Lockwood BE. Assessing the state of contamination in a historic mining town using sediment chemistry. Arch Environ Contam Toxicol. 2016;70:747–756. doi: 10.1007/s00244-016-0265-9. PubMed DOI

Tagne GV, Dowling C. Land-use controls on nutrient loads in aquifers draining agricultural and mixed-use karstic watersheds. Environ Monit Assess. 2020;192(3):168. doi: 10.1007/s10661-020-8126-4. PubMed DOI

Sun J, Takahashi Y, Strosnider WHJ, Kogure T, Wang B, Wu P, Zhu L, Dong Z. Identification and quantification of contributions to karst groundwater using a triple stable isotope labelling and mass balance model. Chemosphere. 2021;263:127946. doi: 10.1016/j.chemosphere.2020.127946. PubMed DOI

Mala J, Hrich K, Vaculikova K, Lejska S. Multicriterial approach to the determination of buffer zones for the Moravian Karst protected landscape area in the Czech Republic. Environ Monit Assess. 2022;194(2):103. doi: 10.1007/s10661-022-09759-2. PubMed DOI

Pronk M, Goldscheider N, Zopfi J. Dynamics and interaction of organic carbon, turbidity and bacteria in karst aquifer system. Hydrogeol J. 2006;14:473–484. doi: 10.1007/s10040-005-0454-5. DOI

Zhang Y, Kelly WR, Panno SV, Liu WT. Tracing fecal pollution sources in karst groundwater by Bacteroidales genetic biomarkers, bacterial indicators, and environmental variables. Sci Total Environ. 2014;490:1082–1090. doi: 10.1016/j.scitotenv.2014.05.086. PubMed DOI

Diston D, Sinreich M, Zimmermann S, Baumgartner A, Felleisen R. Evaluation of molecular- and culture-dependent MST markers to detect fecal contamination and indicate viral presence in good quality groundwater. Environ Sci Technol. 2015;49:7142–7151. doi: 10.1021/acs.est.5b00515. PubMed DOI

He Q, Qui S, Jiang Y, Wu Z, Liu Z. Land-use change caused microbial pollution in a karst underground river, Chongqing. China Environ Earth Sci. 2016;75:709. doi: 10.1007/s12665-016-5530-8. DOI

Diston D, Robbi R, Baumgartner A, Felleisen R. Microbial source tracking in highly vulnerable karst drinking water resources. J Water Health. 2018;16:138–149. doi: 10.2166/wh.2017.215. PubMed DOI

Bandy AM, Cook K, Fryar AE, Zhu J. Differential transport of Escherichia coli isolates compared to abiotic tracers in a karst aquifer. Ground Water. 2020;58:70–78. doi: 10.1111/gwat.12889. PubMed DOI

Buckerfield SJ, Quilliam RS, Waldron S, Naylor LA, Li S, Oliver DM (2019) Rainfall-driven E. coli transfer to the stream-conduit network observed through increasing spatial scales in mixed land-use paddy farming karst terrain. Water Res X 5:100038. 10.1016/j.wroa.2019.100038 PubMed PMC

Buckerfield SJ, Waldron S, Quilliam RS, Naylor LA, Li S, Oliver DM. How can we improve understanding of faecal indicator dynamics in karst systems under changing climatic, population, and land use stressors? - Research opportunities in SW China. Sci Total Environ. 2019;646:438–447. doi: 10.1016/j.scitotenv.2018.07.292. PubMed DOI

Buckerfield SJ, Quilliam RS, Bussiere L, Waldron S, Naylor LA, Li S, Oliver DM. Chronic urban hotspots and agricultural drainage drive microbial pollution of karst water resources in rural developing regions. Sci Total Environ. 2020;744:140898. doi: 10.1016/j.scitotenv.2020.140898. PubMed DOI

Hromas J (2009) Caves. In: Mackovcin P, Sedlacek M (eds) Protected areas in the Czech Republic. AOPK CR, EkoCentrum Brno, Praha, pp 608 (in Czech)

Kolejka J, Mackovcin P, Palensky P (2009) Natural landscape, Chapter 4. In: Hrnciarova T, Mackovcin P, Zvara I et al (eds) Landscape atlas of the Czech Republic. Ministry of the Environment of the Czech Republic, Prague, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, v. v. i., Pruhonice, pp 98–156 (in Czech)

Czech Statistical Office (2017) https://www.czso.cz/czso/home

Ulmann V, Kracalikova A, Dziedzinska R. Mycobacteria in water used for personal hygiene in heavy industry and collieries: a potential risk for employees. Int J Environ Res Public Health. 2015;12:2870–2877. doi: 10.3390/ijerph120302870. PubMed DOI PMC

Ulmann V, Modra H, Babak V, Weston RT, Pavlik I. Recovery of mycobacteria from heavily contaminated environmental matrices. Microorganisms. 2021;9:2178. doi: 10.3390/microorganisms9102178. PubMed DOI PMC

Portaels F, De Muynck A, Sylla MP. Selective isolation of mycobacteria from soil: a statistical analysis approach. J Gen Microbiol. 1988;134:849–855. PubMed

Ulmann V, Modra H, Babak V, Weston RT, Pavlik I. Recovery of mycobacteria from heavily contaminated environmental matrices. Microorganisms. 2021;9(10):2178. doi: 10.3390/microorganisms9102178. PubMed DOI PMC

Engbaek HC, Vergmann B, Baess I, Will DW. M. xenopei: a bacteriological study of M. xenopei including case reports of Danish patients. Acta Pathol Microbiol Scand. 1967;69:577–594. doi: 10.1111/j.1699-0463.1967.tb03767.x. PubMed DOI

Brooks RW, George KL, Parker BC, Falkinham JOIII, Gruff H. Recovery and survival of nontuberculous mycobacteria under various growth and decontamination conditions. Can J Microbiol. 1984;30:1112–1117. doi: 10.1139/m84-174. PubMed DOI

Shannon CE, Weaner W. The mathematical theory of communication. Urbana, Illinois: University of Illinois Press; 1949. p. 177.

Modra H, Bartos M, Hribova P, Ulmann V, Hubelova D, Konecny O, Gersl M, Kudelka J, Voros D, Pavlik I. Detection of mycobacteria in the environment of the Moravian Karst (Bull Rock Cave and the relevant water catchment area): the impact of water sediment, earthworm castings and bat guano. Vet Med-Czech. 2017;62:153–168. doi: 10.17221/126/2016-VETMED. DOI

Pavlik I, Gersl M, Bartos M, Ulmann V, Kaucka P, Caha J, Unc A, Hubelova D, Konecny O, Modra H. Nontuberculous mycobacteria in the environment of Hranice Abyss, the world’s deepest flooded cave (Hranice Karst, Czech Republic) Environ Sci Pollut Res Int. 2018;25:23712–23724. doi: 10.1007/s11356-018-2450-z. PubMed DOI

Pavlik I, Falkinham J, Kazda J (2009) Environments providing favourable conditions for the multiplication and transmission of mycobacteria, Chapter 5. In: Kazda J, Pavlik I, Falkinham IIIJO, Hruska K (eds) The ecology of mycobacteria: impact on animal’s and human’s health. Springer, Dordrecht, pp 89–197

Chandran A, Varghese S, Kandeler E, Thomas A, Hatha M, Mazumder A. An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. Int J Hyg Environ Health. 2011;214:258–264. doi: 10.1016/j.ijheh.2011.01.002. PubMed DOI

Makovcova J, Slany M, Babak V, Slana I, Kralik P. The water environment as a source of potentially pathogenic mycobacteria. J Water Health. 2014;12:254–263. doi: 10.2166/wh.2013.102. PubMed DOI

Ashbolt NJ. Environmental (saprozoic) pathogens of engineered water systems: understanding their ecology for risk assessment and management. Pathogens. 2015;4:390–405. doi: 10.3390/pathogens4020390. PubMed DOI PMC

Webster TM, McFarland A, Gebert MJ, Oliverio AM, Nichols LM, Dunn RR, Hartmann EM, Fierer N. Structure and functional attributes of bacterial communities in premise plumbing across the United States. Environ Sci Technol. 2021;55(20):14105–14114. doi: 10.1021/acs.est.1c03309. PubMed DOI

Isaac TS, Sherchan SP. Molecular detection of opportunistic premise plumbing pathogens in rural Louisiana's drinking water distribution system. Environ Res. 2020;181:108847. doi: 10.1016/j.envres.2019.108847. PubMed DOI

Learbuch KLG, Smidt H, van der Wielen PWJJ. Water and biofilm in drinking water distribution systems in the Netherlands. Sci Total Environ. 2022;831:154940. doi: 10.1016/j.scitotenv.2022.154940. PubMed DOI

Zhang H, Ma M, Huang T, Miao Y, Li H, Liu K, Yang W, Ma B. Spatial and temporal dynamics of Actinobacteria in drinking water reservoirs: novel insights into abundance, community structure, and co-existence model. Sci Total Environ. 2022;814:152804. doi: 10.1016/j.scitotenv.2021.152804. PubMed DOI

Taylor RH, Falkinham JOIII, Norton CD, LeChevallier MW. Chlorine-, chloramine-, chlorine dioxide- and ozone-susceptibility of Mycobacterium avium. Appl Environ Microbiol. 2000;66:1702–1705. doi: 10.1128/AEM.66.4.1702-1705.2000. PubMed DOI PMC

Gomez-Alvarez V, Revetta RP, Santo Domingo JW. Metagenomic analyses of drinking water receiving different disinfection treatments. Appl Environ Microbiol. 2012;78:6095–6102. doi: 10.1128/AEM.01018-12. PubMed DOI PMC

Kitajima M, Cruz MC, Williams RBH, Wuertz S, Whittle AJ. Microbial abundance and community composition in biofilms on in-pipe sensors in a drinking water distribution system. Sci Total Environ. 2021;766:142314. doi: 10.1016/j.scitotenv.2020.142314. PubMed DOI

Vaerewijck MJM, Huys G, Palomino JC, Swings J, Portaels F. Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev. 2005;29:911–934. doi: 10.1016/j.femsre.2005.02.001. PubMed DOI

Schwabacher H. A strain of Mycobacterium isolated from skin lesions of a cold-blooded animal, Xenopus laevis, and its relation to atypical acid-fast bacilli occurring in man. J Hyg (Lond) 1959;57:57–67. doi: 10.1017/S0022172400019896. PubMed DOI PMC

Pavlik I, Ulmann V, Modra H, Gersl M, Rantova B, Zukal J, Zukalova K, Konecny O, Kana V, Kubalek P, Babak V, Weston RT. Nontuberculous mycobacteria prevalence in bats’ guano from caves and attics of buildings studied by culture and qPCR examinations. Microorganisms. 2021;9:2236. doi: 10.3390/microorganisms9112236. PubMed DOI PMC

Cui Q, Huang Y, Wang H, Fang T. Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage. Environ Pollut. 2019;249:24–35. doi: 10.1016/j.envpol.2019.02.094. PubMed DOI

Atashgahi S, Aydin R, Dimitrov MR, Sipkema D, Hamons K, Lahti L, Maphosa F, Kruse T, Saccenti E, Springael D, Dejonghe W, Smidt H. Impact of wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Sci Rep. 2015;5:17284. doi: 10.1038/srep17284. PubMed DOI PMC

Kazda J (ed) (2000) The ecology of mycobacteria; Kluwer Academic Publishers, Dordrecht, Germany; Boston, MA, USA; London, UK, pp 1–72

Ye L, Zhang T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rRNA 454 pyrosequencing. Appl Microbiol Biotechnol. 2013;97:2681–2690. doi: 10.1007/s00253-012-4082-4. PubMed DOI PMC

Amha YM, Anwar MZ, Kumaraswamy R, Henschel A, Ahmad F. Mycobacteria in municipal wastewater treatment and reuse: microbial diversity for screening the occurrence of clinically and environmentally relevant species in arid regions. Environ Sci Technol. 2017;51:3048–3056. doi: 10.1021/acs.est.6b05580. PubMed DOI

Directive 2000/54/EC (2000) European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. Off J Eur Communities L262:21–45

Alffenaar JW, Märtson AG, Heysell SK, Cho JG, Patanwala A, Burch G, Kim HY, Sturkenboom MGG, Byrne A, Marriott D, Sandaradura I, Tiberi S, Sintchencko V, Srivastava S, Peloquin CA. Therapeutic drug monitoring in non-tuberculosis mycobacteria infections. Clin Pharmacokinet. 2021;60(6):711–725. doi: 10.1007/s40262-021-01000-6. PubMed DOI PMC

Modra H, Gruberova E, Konecny O, Ulmann V, Kaucka P, Vlkova M, Tuma A, Halesova T, Kudelka J, Gersl M, Pavlik I. Influx and concentration of triazine pesticides in the Amaterska Cave System, Moravian Karst, Czech Republic. J Soils Sediments. 2018;18:640–647. doi: 10.1007/s11368-017-1831-0. DOI

LPSN: List of prokaryotic names with standing in nomenclature. https://lpsn.dsmz.de/. (Accessed 1st July 2023). PubMed PMC

Dolezalova K, Maly M, Wallenfels J, Gopfertova D. Nontuberculous mycobacterial infections in children in the Czech Republic in the period 2003–2018. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2021;165(3):277–282. doi: 10.5507/bp.2020.025. PubMed DOI

Modra H, Ulmann V, Caha J, Hubelova D, Konecny O, Svobodova J, Weston RT, Pavlik I. Socio-economic and environmental factors related to spatial differences in human non-tuberculous mycobacterial diseases in the Czech Republic. Int J Environ Res Public Health. 2019;16:3969. doi: 10.3390/ijerph16203969. PubMed DOI PMC

Garner E, McLain J, Bowers J, Engelthaler DM, Edwards MA, Pruden A. Microbial ecology and water chemistry impact regrowth of opportunistic pathogens in full-scale reclaimed water distribution systems. Environ Sci Technol. 2018;52:9056–9068. doi: 10.1021/acs.est.8b02818. PubMed DOI

Dowdell K, Haig SJ, Caverly LJ, Shen Y, LiPuma JJ, Raskin L. Nontuberculous mycobacteria in drinking water systems - the challenges of characterization and risk mitigation. Curr Opin Biotechnol. 2019;57:127–136. doi: 10.1016/j.copbio.2019.03.010. PubMed DOI PMC

Iivanainen EK, Martikainen PJ, Vaananen PK, Katila ML. Environmental factors affecting the occurrence of mycobacteria in brook waters. Appl Environ Microbiol. 1993;59:398–404. doi: 10.1128/aem.59.2.398-404.1993. PubMed DOI PMC

Iivanainen E, Martikainen PJ, Vaananen P, Katila ML. Environmental factors affecting the occurrence of mycobacteria brook sediments. J Appl Microbiol. 1999;86:673–681. doi: 10.1046/j.1365-2672.1999.00711.x. PubMed DOI

Fang T, Cui Q, Huang Y, Dong P, Wang H, Liu WT, Ye Q. Distribution comparison and risk assessment of free-floating and particle-attached bacterial pathogens in urban recreational water: implications for water quality management. Sci Total Environ. 2018;613–614:428–438. doi: 10.1016/j.scitotenv.2017.09.008. PubMed DOI

Mapili K, Rhoads WJ, Coughter M, Pieper KJ, Edwards MA, Pruden A. Occurrence of opportunistic pathogens in private wells after major flooding events: a four state molecular survey. Sci Total Environ. 2022;20(826):153901. doi: 10.1016/j.scitotenv.2022.153901. PubMed DOI

Adjemian J, Olivier KN, Seitz AE, Falkinham JO, III, Holland SM, Prevots R. Spatial clusters of nontuberculous mycobacterial lung disease in the United States. Am J Respir Crit Care Med. 2012;186:553–558. doi: 10.1164/rccm.201205-0913OC. PubMed DOI PMC

Pavlik I, Ulmann V, Weston RT (2021) Clinical relevance and environmental prevalence of Mycobacterium fortuitum group members: comment on Mugetti et al. Gene sequencing and phylogenetic analysis: powerful tools for an improved diagnosis of fish mycobacteriosis caused by Mycobacterium fortuitum group members. Microorganisms 9, 797. Microorganism 9(11):2345 PubMed PMC

Gregson BH, Bani A, Steinfield L, Holt D, Whitby C. Anaerobes and methanogens dominate the microbial communities in water harvesting ponds used by Kenyan rural smallholder farmers. Sci Total Environ. 2022;819:153040. doi: 10.1016/j.scitotenv.2022.153040. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...