On-Surface Synthesis of a Radical 2D Supramolecular Organic Framework

. 2024 Feb 07 ; 146 (5) : 3531-3538. [epub] 20240125

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38269436

The design of supramolecular organic radical cages and frameworks is one of the main challenges in supramolecular chemistry. Their interesting material properties and wide applications make them very promising for (photo)redox catalysis, sensors, or host-guest spin-spin interactions. However, the high reactivity of radical organic systems makes the design of such supramolecular radical assemblies challenging. Here, we report the on-surface synthesis of a purely organic supramolecular radical framework on Au(111), by combining supramolecular and on-surface chemistry. We employ a tripodal precursor, functionalized with 7-azaindole groups that, catalyzed by a single gold atom on the surface, forms a radical molecular product constituted by a π-extended fluoradene-based radical core. The radical products self-assemble through hydrogen bonding, leading to extended 2D domains ordered in a Kagome-honeycomb lattice. This approach demonstrates the potential of on-surface synthesis for developing 2D supramolecular radical organic chemistry.

Zobrazit více v PubMed

Balzani V.; Credi A.; Venturi M. The Bottom-Up Approach to Molecular-Level Devices and Machines. Chem. – Eur. J. 2002, 8 (24), 5524–5532. 10.1002/1521-3765(20021216)8:24<5524::AID-CHEM5524>3.0.CO;2-J. PubMed DOI

Lehn J.-M.Supramolecular Chemistry: Concepts and Perspectives; Wiley-VCH: Weinheim, 1995, 1995.

Davis A. V.; Yeh R. M.; Raymond K. N. Supramolecular Assembly Dynamics. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (8), 4793–4796. 10.1073/pnas.052018299. PubMed DOI PMC

Wang C.; Zhang Z.; Zhu Y.; Yang C.; Wu J.; Hu W. 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Optical-Electrical-Magnetic Functionalities. Adv. Mater. 2022, 34 (17), 210229010.1002/adma.202102290. PubMed DOI

Barth J. V.; Costantini G.; Kern K. Engineering Atomic and Molecular Nanostructures at Surfaces. Nature 2005, 437 (7059), 671–679. 10.1038/nature04166. PubMed DOI

Feyter S. D.; Schryver F. C. D. Two-Dimensional Supramolecular Self-Assembly Probed by Scanning Tunneling Microscopy. Chem. Soc. Rev. 2003, 32 (3), 139–150. 10.1039/B206566P. PubMed DOI

Galeotti G.; De marchi F.; Hamzehpoor E.; Maclean O.; Rajeswara rao M.; Chen Y.; Besteiro L. V.; Dettmann D.; Ferrari L.; Frezza F.; Sheverdyaeva P. M.; Liu R.; Kundu A. K.; Moras P.; Ebrahimi M.; Gallagher M. C.; Rosei F.; Perepichka D. F.; Contini G. Synthesis of Mesoscale Ordered Two-Dimensional π-Conjugated Polymers with Semiconducting Properties. Nat. Mater. 2020, 19 (8), 874–880. 10.1038/s41563-020-0682-z. PubMed DOI

Mali K. S.; Pearce N.; Feyter S. D.; Champness N. R. Frontiers of Supramolecular Chemistry at Solid Surfaces. Chem. Soc. Rev. 2017, 46 (9), 2520–2542. 10.1039/C7CS00113D. PubMed DOI

Sosa-vargas L.; Kim E.; Attias A.-J. Beyond “Decorative” 2D Supramolecular Self-Assembly: Strategies towards Functional Surfaces for Nanotechnology. Mater. Horiz. 2017, 4 (4), 570–583. 10.1039/C7MH00127D. DOI

Suzuki T.; Lutz T.; Payer D.; Lin N.; Tait S. L.; Costantini G.; Kern K. Substrate Effect on Supramolecular Self-Assembly: From Semiconductors to Metals. Phys. Chem. Chem. Phys. 2009, 11 (30), 6498–6504. 10.1039/B905125B. PubMed DOI

Rodríguez L. M.; Gómez P.; Más-montoya M.; Abad J.; Tárraga A.; Cerdá J. I.; Méndez J.; Curiel D. Synthesis and Two-Dimensional Chiral Surface Self-Assembly of a π-Conjugated System with Three-Fold Symmetry: Benzotri(7-Azaindole). Angew. Chem., Int. Ed. 2021, 60 (4), 1782–1788. 10.1002/anie.202012100. PubMed DOI

Palma C.-A.; Bjork J.; Bonini M.; Dyer M. S.; Llanes-pallas A.; Bonifazi D.; Persson M.; Samorì P. Tailoring Bicomponent Supramolecular Nanoporous Networks: Phase Segregation, Polymorphism, and Glasses at the Solid–Liquid Interface. J. Am. Chem. Soc. 2009, 131 (36), 13062–13071. 10.1021/ja9032428. PubMed DOI

Li J.; Wieghold S.; Öner M. A.; Simon P.; Hauf M. V.; Margapoti E.; Garrido J. A.; Esch F.; Palma C.-A.; Barth J. V. Three-Dimensional Bicomponent Supramolecular Nanoporous Self-Assembly on a Hybrid All-Carbon Atomically Flat and Transparent Platform. Nano Lett. 2014, 14 (8), 4486–4492. 10.1021/nl501452s. PubMed DOI

Stepanow S.; Lin N.; Barth J. V. Modular Assembly of Low-Dimensional Coordination Architectures on Metal Surfaces. J. Phys.: Condens. Matter 2008, 20 (18), 18400210.1088/0953-8984/20/18/184002. DOI

Gutzler R.; Stepanow S.; Grumelli D.; Lingenfelder M.; Kern K. Mimicking Enzymatic Active Sites on Surfaces for Energy Conversion Chemistry. Acc. Chem. Res. 2015, 48 (7), 2132–2139. 10.1021/acs.accounts.5b00172. PubMed DOI

Moreno D.; Cirera B.; Parreiras S. O.; Urgel J. I.; Giménez-agulló N.; Lauwaet K.; Gallego J. M.; Galán-mascarós J. R.; Martínez J. I.; Ballester P.; Miranda R.; Écija D. Dysprosium-Directed Metallosupramolecular Network on Graphene/Ir(111). Chem. Commun. 2021, 57 (11), 1380–1383. 10.1039/D0CC07315F. PubMed DOI

Velpula G.; Takeda T.; Adisoejoso J.; Inukai K.; Tahara K.; Mali K. S.; Tobe Y.; Feyter S. D. On the Formation of Concentric 2D Multicomponent Assemblies at the Solution–Solid Interface. Chem. Commun. 2017, 53 (6), 1108–1111. 10.1039/C6CC09188A. PubMed DOI

Macleod J. M.; Ivasenko O.; Fu C.; Taerum T.; Rosei F.; Perepichka D. F. Supramolecular Ordering in Oligothiophene–Fullerene Monolayers. J. Am. Chem. Soc. 2009, 131 (46), 16844–16850. 10.1021/ja906206g. PubMed DOI

Ciesielski A.; Szabelski P. J.; Rżysko W.; Cadeddu A.; Cook T. R.; Stang P. J.; Samorì P. Concentration-Dependent Supramolecular Engineering of Hydrogen-Bonded Nanostructures at Surfaces: Predicting Self-Assembly in 2D. J. Am. Chem. Soc. 2013, 135 (18), 6942–6950. 10.1021/ja4002025. PubMed DOI

Galan A.; Ballester P. Stabilization of Reactive Species by Supramolecular Encapsulation. Chem. Soc. Rev. 2016, 45 (6), 1720–1737. 10.1039/C5CS00861A. PubMed DOI

Song Q.; Li F.; Wang Z.; Zhang X. A Supramolecular Strategy for Tuning the Energy Level of Naphthalenediimide: Promoted Formation of Radical Anions with Extraordinary Stability. Chem. Sci. 2015, 6 (6), 3342–3346. 10.1039/C5SC00862J. PubMed DOI PMC

Huang B.; Mao L.; Shi X.; Yang H.-B. Recent Advances and Perspectives on Supramolecular Radical Cages. Chemical Science 2021, 12 (41), 13648–13663. 10.1039/D1SC01618K. PubMed DOI PMC

Crivillers N.; Furukawa S.; Minoia A.; Ver heyen A.; Mas-torrent M.; Sporer C.; Linares M.; Volodin A.; Van haesendonck C.; Van der auweraer M.; Lazzaroni R.; De feyter S.; Veciana J.; Rovira C. Two-Leg Molecular Ladders Formed by Hierarchical Self-Assembly of an Organic Radical. J. Am. Chem. Soc. 2009, 131 (17), 6246–6252. 10.1021/ja900453n. PubMed DOI

Gutiérrez D.; Riera-galindo S.; Ajayakumar M. R.; Veciana J.; Rovira C.; Mas-torrent M.; Crivillers N. Self-Assembly of an Organic Radical Thin Film and Its Memory Function Investigated Using a Liquid-Metal Electrode. J. Phys. Chem. C 2018, 122 (31), 17784–17791. 10.1021/acs.jpcc.8b04170. DOI

Tang B.; Zhao J.; Xu J.-F.; Zhang X. Tuning the Stability of Organic Radicals: From Covalent Approaches to Non-Covalent Approaches. Chem. Sci. 2020, 11 (5), 1192–1204. 10.1039/C9SC06143F. PubMed DOI PMC

Wasielewski M. R.; Forbes M. D. E.; Frank N. L.; Kowalski K.; Scholes G. D.; Yuen-zhou J.; Baldo M. A.; Freedman D. E.; Goldsmith R. H.; Goodson T.; Kirk M. L.; Mccusker J. K.; Ogilvie J. P.; Shultz D. A.; Stoll S.; Whaley K. B. Exploiting Chemistry and Molecular Systems for Quantum Information Science. Nat. Rev. Chem. 2020, 4 (9), 490–504. 10.1038/s41570-020-0200-5. PubMed DOI

de Oteyza D. G.; Frederiksen T. Carbon-Based Nanostructures as a Versatile Platform for Tunable π-Magnetism. J. Phys.: Condens. Matter 2022, 34 (44), 443001.10.1088/1361-648X/ac8a7f. PubMed DOI

Sánchez-grande A.; Urgel J. I.; Veis L.; Edalatmanesh S.; Santos J.; Lauwaet K.; Mutombo P.; Gallego J. M.; Brabec J.; Beran P.; Nachtigallová D.; Miranda R.; Martín N.; Jelínek P.; Écija D. Unravelling the Open-Shell Character of Peripentacene on Au(111). J. Phys. Chem. Lett. 2021, 12 (1), 330–336. 10.1021/acs.jpclett.0c02518. PubMed DOI

Li C.; Liu Y.; Liu Y.; Xue F.-H.; Guan D.; Li Y.; Zheng H.; Liu C.; Jia J.; Liu P.-N.; Li D.-Y.; Wang S. Topological Defects Induced High-Spin Quartet State in Truxene-Based Molecular Graphenoids. CCS Chem. 2022, 5, 695–703. 10.31635/ccschem.022.202201895. DOI

Urgel J. I.; Mishra S.; Hayashi H.; Wilhelm J.; Pignedoli C. A.; Di giovannantonio M.; Widmer R.; Yamashita M.; Hieda N.; Ruffieux P.; Yamada H.; Fasel R. On-Surface Light-Induced Generation of Higher Acenes and Elucidation of Their Open-Shell Character. Nat. Commun. 2019, 10 (1), 861.10.1038/s41467-019-08650-y. PubMed DOI PMC

Pavliček N.; Mistry A.; Majzik Z.; Moll N.; Meyer G.; Fox D. J.; Gross L. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017, 12 (4), 308–311. 10.1038/nnano.2016.305. PubMed DOI

Mishra S.; Yao X.; Chen Q.; Eimre K.; Gröning O.; Ortiz R.; Di giovannantonio M.; Sancho-garcía J. C.; Fernández-rossier J.; Pignedoli C. A.; Müllen K.; Ruffieux P.; Narita A.; Fasel R. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021, 13 (6), 581–586. 10.1038/s41557-021-00678-2. PubMed DOI

Biswas K.; Urgel J. I.; Ajayakumar M. R.; Ma J.; Sánchez-grande A.; Edalatmanesh S.; Lauwaet K.; Mutombo P.; Gallego J. M.; Miranda R.; Jelínek P.; Feng X.; Écija D. Synthesis and Characterization of Peri-Heptacene on a Metallic Surface. Angew. Chem. 2022, 134 (23), e20211498310.1002/ange.202114983. PubMed DOI

Li J.; Sanz S.; Castro-esteban J.; Vilas-varela M.; Friedrich N.; Frederiksen T.; Peña D.; Pascual J. I. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020, 124 (17), 17720110.1103/PhysRevLett.124.177201. PubMed DOI

Biswas K.; Soler D.; Mishra S.; Chen Q.; Yao X.; Sánchez-grande A.; Eimre K.; Mutombo P.; Martín-fuentes C.; Lauwaet K.; Gallego J. M.; Ruffieux P.; Pignedoli C. A.; Müllen K.; Miranda R.; Urgel J. I.; Narita A.; Fasel R.; Jelínek P.; Écija D. Steering Large Magnetic Exchange Coupling in Nanographenes near the Closed-Shell to Open-Shell Transition. J. Am. Chem. Soc. 2023, 145 (5), 2968–2974. 10.1021/jacs.2c11431. PubMed DOI

Gómez P.; Georgakopoulos S.; Más-montoya M.; Cerdá J.; Pérez J.; Ortí E.; Aragó J.; Curiel D. Improving the Robustness of Organic Semiconductors through Hydrogen Bonding. ACS Appl. Mater. Interfaces 2021, 13 (7), 8620–8630. 10.1021/acsami.0c18928. PubMed DOI PMC

Gómez P.; Wang J.; Más-montoya M.; Bautista D.; Weijtens C. H. L.; Curiel D.; Janssen R. A. J. Pyrene-Based Small-Molecular Hole Transport Layers for Efficient and Stable Narrow-Bandgap Perovskite Solar Cells. Solar RRL 2021, 5 (10), 210045410.1002/solr.202100454. DOI

Sonsona I. G.; Carrera M.; Más-montoya M.; Sánchez R. S.; Serafini P.; Barea E. M.; Mora-seró I.; Curiel D. 2D-Self-Assembled Organic Materials in Undoped Hole Transport Bilayers for Efficient Inverted Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15 (18), 22310–22319. 10.1021/acsami.2c23010. PubMed DOI PMC

Zhang Z.; Perepichka D. F.; Khaliullin R. Z. Adatoms in the Surface-Confined Ullmann Coupling of Phenyl Groups. J. Phys. Chem. Lett. 2021, 12 (45), 11061–11069. 10.1021/acs.jpclett.1c02914. PubMed DOI

Mendieta-moreno J. I.; Mallada B.; De la torre B.; Cadart T.; Kotora M.; Jelínek P. Unusual Scaffold Rearrangement in Polyaromatic Hydrocarbons Driven by Concerted Action of Single Gold Atoms on a Gold Surface. Angew. Chem., Int. Ed. 2022, 61 (50), e20220801010.1002/anie.202208010. PubMed DOI

Lowe B.; Hellerstedt J.; Matěj A.; Mutombo P.; Kumar D.; Ondráček M.; Jelinek P.; Schiffrin A. Selective Activation of Aromatic C–H Bonds Catalyzed by Single Gold Atoms at Room Temperature. J. Am. Chem. Soc. 2022, 144 (46), 21389–21397. 10.1021/jacs.2c10154. PubMed DOI

Rapoport H.; Smolinsky G. Fluoradene. J. Am. Chem. Soc. 1960, 82 (4), 934–941. 10.1021/ja01489a038. DOI

Baum G.; Shechter H. Carbenic Processes in Decomposition of Spiro[Fluorene-9,3′-Indazole]. Simple Route to the Fluoradene System. J. Org. Chem. 1976, 41 (12), 2120–2124. 10.1021/jo00874a011. DOI

Telychko M.; Li G.; Mutombo P.; Soler-polo D.; Peng X.; Su J.; Song S.; Koh M. J.; Edmonds M.; Jelínek P.; Wu J.; Lu J. Ultrahigh-Yield on-Surface Synthesis and Assembly of Circumcoronene into a Chiral Electronic Kagome-Honeycomb Lattice. Science. Advances 2021, 7 (3), eabf026910.1126/sciadv.abf0269. PubMed DOI PMC

Pawlak R.; Liu X.; Ninova S.; D’astolfo P.; Drechsel C.; Liu J.-C.; Häner R.; Decurtins S.; Aschauer U.; Liu S.-X.; Meyer E. On-Surface Synthesis of Nitrogen-Doped Kagome Graphene. Angew. Chem., Int. Ed. 2021, 60 (15), 8370–8375. 10.1002/anie.202016469. PubMed DOI

Mishra S.; Fatayer S.; Fernández S.; Kaiser K.; Peña D.; Gross L. Nonbenzenoid High-Spin Polycyclic Hydrocarbons Generated by Atom Manipulation. ACS Nano 2022, 16 (2), 3264–3271. 10.1021/acsnano.1c11157. PubMed DOI

Kühne D.; Klappenberger F.; Decker R.; Schlickum U.; Brune H.; Klyatskaya S.; Ruben M.; Barth J. V. High-Quality 2D Metal–Organic Coordination Network Providing Giant Cavities within Mesoscale Domains. J. Am. Chem. Soc. 2009, 131 (11), 3881–3883. 10.1021/ja809946z. PubMed DOI

Brune H. Microscopic View of Epitaxial Metal Growth: Nucleation and Aggregation. Surf. Sci. Rep. 1998, 31 (4), 125–229. 10.1016/S0167-5729(99)80001-6. DOI

Giesen M. Step and Island Dynamics at Solid/Vacuum and Solid/Liquid Interfaces. Prog. Surf. Sci. 2001, 68 (1), 1–154. 10.1016/S0079-6816(00)00021-6. DOI

Spurgeon P. M.; Lai K. C.; Han Y.; Evans J. W.; Thiel P. A. Fundamentals of Au(111) Surface Dynamics: Coarsening of Two-Dimensional Au Islands. J. Phys. Chem. C 2020, 124 (13), 7492–7499. 10.1021/acs.jpcc.9b12056. DOI

Kondo J. Resistance Minimum in Dilute Magnetic Alloys. Prog. Theor. Phys. 1964, 32 (1), 37–49. 10.1143/PTP.32.37. DOI

Madhavan V.; Chen W.; Jamneala T.; Crommie M. F.; Wingreen N. S. Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance. Science 1998, 280 (5363), 567–569. 10.1126/science.280.5363.567. PubMed DOI

Malyshev O. B.; Middleman K. J. In Situ Ultrahigh Vacuum Residual Gas Analyzer “Calibration.. Journal of Vacuum Science & Technology A 2008, 26 (6), 1474–1479. 10.1116/1.2990856. DOI

Sánchez-sánchez C.; Martínez J. I.; Ruiz del arbol N.; Ruffieux P.; Fasel R.; López M. F.; De andres P. L.; Martín-gago J. Á. On-Surface Hydrogen-Induced Covalent Coupling of Polycyclic Aromatic Hydrocarbons via a Superhydrogenated Intermediate. J. Am. Chem. Soc. 2019, 141 (8), 3550–3557. 10.1021/jacs.8b12239. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Planar and Curved π-Extended Porphyrins by On-Surface Cyclodehydrogenation

. 2024 Dec 18 ; 146 (50) : 34600-34608. [epub] 20241204

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace