On-Surface Synthesis of a Radical 2D Supramolecular Organic Framework
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38269436
PubMed Central
PMC10859929
DOI
10.1021/jacs.3c13702
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The design of supramolecular organic radical cages and frameworks is one of the main challenges in supramolecular chemistry. Their interesting material properties and wide applications make them very promising for (photo)redox catalysis, sensors, or host-guest spin-spin interactions. However, the high reactivity of radical organic systems makes the design of such supramolecular radical assemblies challenging. Here, we report the on-surface synthesis of a purely organic supramolecular radical framework on Au(111), by combining supramolecular and on-surface chemistry. We employ a tripodal precursor, functionalized with 7-azaindole groups that, catalyzed by a single gold atom on the surface, forms a radical molecular product constituted by a π-extended fluoradene-based radical core. The radical products self-assemble through hydrogen bonding, leading to extended 2D domains ordered in a Kagome-honeycomb lattice. This approach demonstrates the potential of on-surface synthesis for developing 2D supramolecular radical organic chemistry.
CATRIN RCPTM Palacký University Šlechtitelu° 27 783 71 Olomouc Czech Republic
Department of Organic Chemistry University of Murcia Campus of Espinardo 30100 Murcia Spain
Institute of Physics of Czech Academy of Sciences Cukrovarnická 10 16200 Prague 6 Czech Republic
Zobrazit více v PubMed
Balzani V.; Credi A.; Venturi M. The Bottom-Up Approach to Molecular-Level Devices and Machines. Chem. – Eur. J. 2002, 8 (24), 5524–5532. 10.1002/1521-3765(20021216)8:24<5524::AID-CHEM5524>3.0.CO;2-J. PubMed DOI
Lehn J.-M.Supramolecular Chemistry: Concepts and Perspectives; Wiley-VCH: Weinheim, 1995, 1995.
Davis A. V.; Yeh R. M.; Raymond K. N. Supramolecular Assembly Dynamics. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (8), 4793–4796. 10.1073/pnas.052018299. PubMed DOI PMC
Wang C.; Zhang Z.; Zhu Y.; Yang C.; Wu J.; Hu W. 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Optical-Electrical-Magnetic Functionalities. Adv. Mater. 2022, 34 (17), 210229010.1002/adma.202102290. PubMed DOI
Barth J. V.; Costantini G.; Kern K. Engineering Atomic and Molecular Nanostructures at Surfaces. Nature 2005, 437 (7059), 671–679. 10.1038/nature04166. PubMed DOI
Feyter S. D.; Schryver F. C. D. Two-Dimensional Supramolecular Self-Assembly Probed by Scanning Tunneling Microscopy. Chem. Soc. Rev. 2003, 32 (3), 139–150. 10.1039/B206566P. PubMed DOI
Galeotti G.; De marchi F.; Hamzehpoor E.; Maclean O.; Rajeswara rao M.; Chen Y.; Besteiro L. V.; Dettmann D.; Ferrari L.; Frezza F.; Sheverdyaeva P. M.; Liu R.; Kundu A. K.; Moras P.; Ebrahimi M.; Gallagher M. C.; Rosei F.; Perepichka D. F.; Contini G. Synthesis of Mesoscale Ordered Two-Dimensional π-Conjugated Polymers with Semiconducting Properties. Nat. Mater. 2020, 19 (8), 874–880. 10.1038/s41563-020-0682-z. PubMed DOI
Mali K. S.; Pearce N.; Feyter S. D.; Champness N. R. Frontiers of Supramolecular Chemistry at Solid Surfaces. Chem. Soc. Rev. 2017, 46 (9), 2520–2542. 10.1039/C7CS00113D. PubMed DOI
Sosa-vargas L.; Kim E.; Attias A.-J. Beyond “Decorative” 2D Supramolecular Self-Assembly: Strategies towards Functional Surfaces for Nanotechnology. Mater. Horiz. 2017, 4 (4), 570–583. 10.1039/C7MH00127D. DOI
Suzuki T.; Lutz T.; Payer D.; Lin N.; Tait S. L.; Costantini G.; Kern K. Substrate Effect on Supramolecular Self-Assembly: From Semiconductors to Metals. Phys. Chem. Chem. Phys. 2009, 11 (30), 6498–6504. 10.1039/B905125B. PubMed DOI
Rodríguez L. M.; Gómez P.; Más-montoya M.; Abad J.; Tárraga A.; Cerdá J. I.; Méndez J.; Curiel D. Synthesis and Two-Dimensional Chiral Surface Self-Assembly of a π-Conjugated System with Three-Fold Symmetry: Benzotri(7-Azaindole). Angew. Chem., Int. Ed. 2021, 60 (4), 1782–1788. 10.1002/anie.202012100. PubMed DOI
Palma C.-A.; Bjork J.; Bonini M.; Dyer M. S.; Llanes-pallas A.; Bonifazi D.; Persson M.; Samorì P. Tailoring Bicomponent Supramolecular Nanoporous Networks: Phase Segregation, Polymorphism, and Glasses at the Solid–Liquid Interface. J. Am. Chem. Soc. 2009, 131 (36), 13062–13071. 10.1021/ja9032428. PubMed DOI
Li J.; Wieghold S.; Öner M. A.; Simon P.; Hauf M. V.; Margapoti E.; Garrido J. A.; Esch F.; Palma C.-A.; Barth J. V. Three-Dimensional Bicomponent Supramolecular Nanoporous Self-Assembly on a Hybrid All-Carbon Atomically Flat and Transparent Platform. Nano Lett. 2014, 14 (8), 4486–4492. 10.1021/nl501452s. PubMed DOI
Stepanow S.; Lin N.; Barth J. V. Modular Assembly of Low-Dimensional Coordination Architectures on Metal Surfaces. J. Phys.: Condens. Matter 2008, 20 (18), 18400210.1088/0953-8984/20/18/184002. DOI
Gutzler R.; Stepanow S.; Grumelli D.; Lingenfelder M.; Kern K. Mimicking Enzymatic Active Sites on Surfaces for Energy Conversion Chemistry. Acc. Chem. Res. 2015, 48 (7), 2132–2139. 10.1021/acs.accounts.5b00172. PubMed DOI
Moreno D.; Cirera B.; Parreiras S. O.; Urgel J. I.; Giménez-agulló N.; Lauwaet K.; Gallego J. M.; Galán-mascarós J. R.; Martínez J. I.; Ballester P.; Miranda R.; Écija D. Dysprosium-Directed Metallosupramolecular Network on Graphene/Ir(111). Chem. Commun. 2021, 57 (11), 1380–1383. 10.1039/D0CC07315F. PubMed DOI
Velpula G.; Takeda T.; Adisoejoso J.; Inukai K.; Tahara K.; Mali K. S.; Tobe Y.; Feyter S. D. On the Formation of Concentric 2D Multicomponent Assemblies at the Solution–Solid Interface. Chem. Commun. 2017, 53 (6), 1108–1111. 10.1039/C6CC09188A. PubMed DOI
Macleod J. M.; Ivasenko O.; Fu C.; Taerum T.; Rosei F.; Perepichka D. F. Supramolecular Ordering in Oligothiophene–Fullerene Monolayers. J. Am. Chem. Soc. 2009, 131 (46), 16844–16850. 10.1021/ja906206g. PubMed DOI
Ciesielski A.; Szabelski P. J.; Rżysko W.; Cadeddu A.; Cook T. R.; Stang P. J.; Samorì P. Concentration-Dependent Supramolecular Engineering of Hydrogen-Bonded Nanostructures at Surfaces: Predicting Self-Assembly in 2D. J. Am. Chem. Soc. 2013, 135 (18), 6942–6950. 10.1021/ja4002025. PubMed DOI
Galan A.; Ballester P. Stabilization of Reactive Species by Supramolecular Encapsulation. Chem. Soc. Rev. 2016, 45 (6), 1720–1737. 10.1039/C5CS00861A. PubMed DOI
Song Q.; Li F.; Wang Z.; Zhang X. A Supramolecular Strategy for Tuning the Energy Level of Naphthalenediimide: Promoted Formation of Radical Anions with Extraordinary Stability. Chem. Sci. 2015, 6 (6), 3342–3346. 10.1039/C5SC00862J. PubMed DOI PMC
Huang B.; Mao L.; Shi X.; Yang H.-B. Recent Advances and Perspectives on Supramolecular Radical Cages. Chemical Science 2021, 12 (41), 13648–13663. 10.1039/D1SC01618K. PubMed DOI PMC
Crivillers N.; Furukawa S.; Minoia A.; Ver heyen A.; Mas-torrent M.; Sporer C.; Linares M.; Volodin A.; Van haesendonck C.; Van der auweraer M.; Lazzaroni R.; De feyter S.; Veciana J.; Rovira C. Two-Leg Molecular Ladders Formed by Hierarchical Self-Assembly of an Organic Radical. J. Am. Chem. Soc. 2009, 131 (17), 6246–6252. 10.1021/ja900453n. PubMed DOI
Gutiérrez D.; Riera-galindo S.; Ajayakumar M. R.; Veciana J.; Rovira C.; Mas-torrent M.; Crivillers N. Self-Assembly of an Organic Radical Thin Film and Its Memory Function Investigated Using a Liquid-Metal Electrode. J. Phys. Chem. C 2018, 122 (31), 17784–17791. 10.1021/acs.jpcc.8b04170. DOI
Tang B.; Zhao J.; Xu J.-F.; Zhang X. Tuning the Stability of Organic Radicals: From Covalent Approaches to Non-Covalent Approaches. Chem. Sci. 2020, 11 (5), 1192–1204. 10.1039/C9SC06143F. PubMed DOI PMC
Wasielewski M. R.; Forbes M. D. E.; Frank N. L.; Kowalski K.; Scholes G. D.; Yuen-zhou J.; Baldo M. A.; Freedman D. E.; Goldsmith R. H.; Goodson T.; Kirk M. L.; Mccusker J. K.; Ogilvie J. P.; Shultz D. A.; Stoll S.; Whaley K. B. Exploiting Chemistry and Molecular Systems for Quantum Information Science. Nat. Rev. Chem. 2020, 4 (9), 490–504. 10.1038/s41570-020-0200-5. PubMed DOI
de Oteyza D. G.; Frederiksen T. Carbon-Based Nanostructures as a Versatile Platform for Tunable π-Magnetism. J. Phys.: Condens. Matter 2022, 34 (44), 443001.10.1088/1361-648X/ac8a7f. PubMed DOI
Sánchez-grande A.; Urgel J. I.; Veis L.; Edalatmanesh S.; Santos J.; Lauwaet K.; Mutombo P.; Gallego J. M.; Brabec J.; Beran P.; Nachtigallová D.; Miranda R.; Martín N.; Jelínek P.; Écija D. Unravelling the Open-Shell Character of Peripentacene on Au(111). J. Phys. Chem. Lett. 2021, 12 (1), 330–336. 10.1021/acs.jpclett.0c02518. PubMed DOI
Li C.; Liu Y.; Liu Y.; Xue F.-H.; Guan D.; Li Y.; Zheng H.; Liu C.; Jia J.; Liu P.-N.; Li D.-Y.; Wang S. Topological Defects Induced High-Spin Quartet State in Truxene-Based Molecular Graphenoids. CCS Chem. 2022, 5, 695–703. 10.31635/ccschem.022.202201895. DOI
Urgel J. I.; Mishra S.; Hayashi H.; Wilhelm J.; Pignedoli C. A.; Di giovannantonio M.; Widmer R.; Yamashita M.; Hieda N.; Ruffieux P.; Yamada H.; Fasel R. On-Surface Light-Induced Generation of Higher Acenes and Elucidation of Their Open-Shell Character. Nat. Commun. 2019, 10 (1), 861.10.1038/s41467-019-08650-y. PubMed DOI PMC
Pavliček N.; Mistry A.; Majzik Z.; Moll N.; Meyer G.; Fox D. J.; Gross L. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017, 12 (4), 308–311. 10.1038/nnano.2016.305. PubMed DOI
Mishra S.; Yao X.; Chen Q.; Eimre K.; Gröning O.; Ortiz R.; Di giovannantonio M.; Sancho-garcía J. C.; Fernández-rossier J.; Pignedoli C. A.; Müllen K.; Ruffieux P.; Narita A.; Fasel R. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021, 13 (6), 581–586. 10.1038/s41557-021-00678-2. PubMed DOI
Biswas K.; Urgel J. I.; Ajayakumar M. R.; Ma J.; Sánchez-grande A.; Edalatmanesh S.; Lauwaet K.; Mutombo P.; Gallego J. M.; Miranda R.; Jelínek P.; Feng X.; Écija D. Synthesis and Characterization of Peri-Heptacene on a Metallic Surface. Angew. Chem. 2022, 134 (23), e20211498310.1002/ange.202114983. PubMed DOI
Li J.; Sanz S.; Castro-esteban J.; Vilas-varela M.; Friedrich N.; Frederiksen T.; Peña D.; Pascual J. I. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020, 124 (17), 17720110.1103/PhysRevLett.124.177201. PubMed DOI
Biswas K.; Soler D.; Mishra S.; Chen Q.; Yao X.; Sánchez-grande A.; Eimre K.; Mutombo P.; Martín-fuentes C.; Lauwaet K.; Gallego J. M.; Ruffieux P.; Pignedoli C. A.; Müllen K.; Miranda R.; Urgel J. I.; Narita A.; Fasel R.; Jelínek P.; Écija D. Steering Large Magnetic Exchange Coupling in Nanographenes near the Closed-Shell to Open-Shell Transition. J. Am. Chem. Soc. 2023, 145 (5), 2968–2974. 10.1021/jacs.2c11431. PubMed DOI
Gómez P.; Georgakopoulos S.; Más-montoya M.; Cerdá J.; Pérez J.; Ortí E.; Aragó J.; Curiel D. Improving the Robustness of Organic Semiconductors through Hydrogen Bonding. ACS Appl. Mater. Interfaces 2021, 13 (7), 8620–8630. 10.1021/acsami.0c18928. PubMed DOI PMC
Gómez P.; Wang J.; Más-montoya M.; Bautista D.; Weijtens C. H. L.; Curiel D.; Janssen R. A. J. Pyrene-Based Small-Molecular Hole Transport Layers for Efficient and Stable Narrow-Bandgap Perovskite Solar Cells. Solar RRL 2021, 5 (10), 210045410.1002/solr.202100454. DOI
Sonsona I. G.; Carrera M.; Más-montoya M.; Sánchez R. S.; Serafini P.; Barea E. M.; Mora-seró I.; Curiel D. 2D-Self-Assembled Organic Materials in Undoped Hole Transport Bilayers for Efficient Inverted Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15 (18), 22310–22319. 10.1021/acsami.2c23010. PubMed DOI PMC
Zhang Z.; Perepichka D. F.; Khaliullin R. Z. Adatoms in the Surface-Confined Ullmann Coupling of Phenyl Groups. J. Phys. Chem. Lett. 2021, 12 (45), 11061–11069. 10.1021/acs.jpclett.1c02914. PubMed DOI
Mendieta-moreno J. I.; Mallada B.; De la torre B.; Cadart T.; Kotora M.; Jelínek P. Unusual Scaffold Rearrangement in Polyaromatic Hydrocarbons Driven by Concerted Action of Single Gold Atoms on a Gold Surface. Angew. Chem., Int. Ed. 2022, 61 (50), e20220801010.1002/anie.202208010. PubMed DOI
Lowe B.; Hellerstedt J.; Matěj A.; Mutombo P.; Kumar D.; Ondráček M.; Jelinek P.; Schiffrin A. Selective Activation of Aromatic C–H Bonds Catalyzed by Single Gold Atoms at Room Temperature. J. Am. Chem. Soc. 2022, 144 (46), 21389–21397. 10.1021/jacs.2c10154. PubMed DOI
Rapoport H.; Smolinsky G. Fluoradene. J. Am. Chem. Soc. 1960, 82 (4), 934–941. 10.1021/ja01489a038. DOI
Baum G.; Shechter H. Carbenic Processes in Decomposition of Spiro[Fluorene-9,3′-Indazole]. Simple Route to the Fluoradene System. J. Org. Chem. 1976, 41 (12), 2120–2124. 10.1021/jo00874a011. DOI
Telychko M.; Li G.; Mutombo P.; Soler-polo D.; Peng X.; Su J.; Song S.; Koh M. J.; Edmonds M.; Jelínek P.; Wu J.; Lu J. Ultrahigh-Yield on-Surface Synthesis and Assembly of Circumcoronene into a Chiral Electronic Kagome-Honeycomb Lattice. Science. Advances 2021, 7 (3), eabf026910.1126/sciadv.abf0269. PubMed DOI PMC
Pawlak R.; Liu X.; Ninova S.; D’astolfo P.; Drechsel C.; Liu J.-C.; Häner R.; Decurtins S.; Aschauer U.; Liu S.-X.; Meyer E. On-Surface Synthesis of Nitrogen-Doped Kagome Graphene. Angew. Chem., Int. Ed. 2021, 60 (15), 8370–8375. 10.1002/anie.202016469. PubMed DOI
Mishra S.; Fatayer S.; Fernández S.; Kaiser K.; Peña D.; Gross L. Nonbenzenoid High-Spin Polycyclic Hydrocarbons Generated by Atom Manipulation. ACS Nano 2022, 16 (2), 3264–3271. 10.1021/acsnano.1c11157. PubMed DOI
Kühne D.; Klappenberger F.; Decker R.; Schlickum U.; Brune H.; Klyatskaya S.; Ruben M.; Barth J. V. High-Quality 2D Metal–Organic Coordination Network Providing Giant Cavities within Mesoscale Domains. J. Am. Chem. Soc. 2009, 131 (11), 3881–3883. 10.1021/ja809946z. PubMed DOI
Brune H. Microscopic View of Epitaxial Metal Growth: Nucleation and Aggregation. Surf. Sci. Rep. 1998, 31 (4), 125–229. 10.1016/S0167-5729(99)80001-6. DOI
Giesen M. Step and Island Dynamics at Solid/Vacuum and Solid/Liquid Interfaces. Prog. Surf. Sci. 2001, 68 (1), 1–154. 10.1016/S0079-6816(00)00021-6. DOI
Spurgeon P. M.; Lai K. C.; Han Y.; Evans J. W.; Thiel P. A. Fundamentals of Au(111) Surface Dynamics: Coarsening of Two-Dimensional Au Islands. J. Phys. Chem. C 2020, 124 (13), 7492–7499. 10.1021/acs.jpcc.9b12056. DOI
Kondo J. Resistance Minimum in Dilute Magnetic Alloys. Prog. Theor. Phys. 1964, 32 (1), 37–49. 10.1143/PTP.32.37. DOI
Madhavan V.; Chen W.; Jamneala T.; Crommie M. F.; Wingreen N. S. Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance. Science 1998, 280 (5363), 567–569. 10.1126/science.280.5363.567. PubMed DOI
Malyshev O. B.; Middleman K. J. In Situ Ultrahigh Vacuum Residual Gas Analyzer “Calibration.. Journal of Vacuum Science & Technology A 2008, 26 (6), 1474–1479. 10.1116/1.2990856. DOI
Sánchez-sánchez C.; Martínez J. I.; Ruiz del arbol N.; Ruffieux P.; Fasel R.; López M. F.; De andres P. L.; Martín-gago J. Á. On-Surface Hydrogen-Induced Covalent Coupling of Polycyclic Aromatic Hydrocarbons via a Superhydrogenated Intermediate. J. Am. Chem. Soc. 2019, 141 (8), 3550–3557. 10.1021/jacs.8b12239. PubMed DOI PMC
Planar and Curved π-Extended Porphyrins by On-Surface Cyclodehydrogenation