Planar and Curved π-Extended Porphyrins by On-Surface Cyclodehydrogenation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39629975
PubMed Central
PMC11664915
DOI
10.1021/jacs.4c12460
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Recent advancements in on-surface synthesis have enabled the reliable and predictable preparation of atomically precise low-dimensional materials with remarkable properties, which are often unattainable through traditional wet chemistry. Among these materials, porphyrins stand out as a particularly intriguing class of molecules, extensively studied both in solution and on surfaces. Their appeal lies in the ability to fine-tune their unique chemical and physical properties through central metal exchange or peripheral functionalization. However, the synthesis of π-extended porphyrins featuring unsubstituted anthracenyl groups has remained elusive. Herein, we report an in vacuo temperature-controlled cyclodehydrogenation of bis- and tetraanthracenyl Zn(II) porphyrins on a gold(111) surface. By gradually increasing the temperature, sequential dehydrogenation leads to the formation of fused anthracenyl porphyrin products. Notably, at high molecular coverage, the formation of bowl-shaped porphyrins occurs, along with transmetalation of Zn with Au. These findings open the door to a variety of π-extended anthracenyl-containing porphyrin products via cyclodehydrogenation and transmetalation, offering significant potential in the fields of molecular (photo/electro)catalysis, (opto)electronics, and spintronics.
Department of Chemistry University of Zürich 8057 Zürich Switzerland
Molecular Surface Science Group Empa 8600 Dübendorf Switzerland
Nanosurf Laboratory Institute of Physics The Czech Academy of Sciences 16200 Prague Czech Republic
Université Paris Saclay CEA CNRS NIMBE LICSEN 91191 Gif sur Yvette France
Zobrazit více v PubMed
Porphyrins and Metalloporphyrins: A New Edition Based on the Original Volume by J. E. Falk; Falk J. E.; Smith K. M., Eds.; Elsevier Scientific Pub. Co.: Amsterdam; New York, 1975.
Battersby A. R. Tetrapyrroles: The Pigments of Life. Nat. Prod. Rep. 2000, 17, 507–526. 10.1039/b002635m. PubMed DOI
Jurow M.; Schuckman A. E.; Batteas J. D.; Drain C. M. Porphyrins as Molecular Electronic Components of Functional Devices. Coord. Chem. Rev. 2010, 254, 2297–2310. 10.1016/j.ccr.2010.05.014. PubMed DOI PMC
Imahori H.; Fukuzumi S. Porphyrin- and Fullerene-Based Molecular Photovoltaic Devices. Adv. Funct. Mater. 2004, 14, 525–536. 10.1002/adfm.200305172. DOI
Zwick P.; Dulić D.; van der Zant H. S. J.; Mayor M. Porphyrins as Building Blocks for Single-Molecule Devices. Nanoscale 2021, 13, 15500–15525. 10.1039/D1NR04523G. PubMed DOI PMC
Mahmood A.; Hu J.-Y.; Xiao B.; Tang A.; Wang X.; Zhou E. Recent Progress in Porphyrin-Based Materials for Organic Solar Cells. J. Mater. Chem. A 2018, 6, 16769–16797. 10.1039/C8TA06392C. DOI
Li L.-L.; Diau E. W.-G. Porphyrin-Sensitized Solar Cells. Chem. Soc. Rev. 2013, 42, 291–304. 10.1039/C2CS35257E. PubMed DOI
Paolesse R.; Nardis S.; Monti D.; Stefanelli M.; Di Natale C. Porphyrinoids for Chemical Sensor Applications. Chem. Rev. 2017, 117, 2517–2583. 10.1021/acs.chemrev.6b00361. PubMed DOI
Park J. M.; Hong K.-I.; Lee H.; Jang W.-D. Bioinspired Applications of Porphyrin Derivatives. Acc. Chem. Res. 2021, 54, 2249–2260. 10.1021/acs.accounts.1c00114. PubMed DOI
Lindsey J. S.; Prathapan S.; Johnson T. E.; Wagner R. W. Porphyrin Building Blocks for Modular Construction of Bioorganic Model Systems. Tetrahedron 1994, 50, 8941–8968. 10.1016/S0040-4020(01)85364-3. DOI
Auwärter W.; Écija D.; Klappenberger F.; Barth J. V. Porphyrins at Interfaces. Nat. Chem. 2015, 7, 105–120. 10.1038/nchem.2159. PubMed DOI
Gottfried J. M. Surface Chemistry of Porphyrins and Phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379. 10.1016/j.surfrep.2015.04.001. DOI
Sun Q.; Mateo L. M.; Robles R.; Ruffieux P.; Lorente N.; Bottari G.; Torres T.; Fasel R. Inducing Open-Shell Character in Porphyrins through Surface-Assisted Phenalenyl π-Extension. J. Am. Chem. Soc. 2020, 142, 18109–18117. 10.1021/jacs.0c07781. PubMed DOI
Sun Q.; Mateo L. M.; Robles R.; Ruffieux P.; Bottari G.; Torres T.; Fasel R.; Lorente N. Magnetic Interplay between π-Electrons of Open-Shell Porphyrins and d-Electrons of Their Central Transition Metal Ions. Adv. Sci. 2022, 9, 210590610.1002/advs.202105906. PubMed DOI PMC
Baklanov A.; Garnica M.; Robert A.; Bocquet M.-L.; Seufert K.; Küchle J. T.; Ryan P. T. P.; Haag F.; Kakavandi R.; Allegretti F.; Auwärter W. On-Surface Synthesis of Nonmetal Porphyrins. J. Am. Chem. Soc. 2020, 142, 1871–1881. 10.1021/jacs.9b10711. PubMed DOI
Chen H.; Tao L.; Wang D.; Wu Z.-Y.; Zhang J.-L.; Gao S.; Xiao W.; Du S.; Ernst K.-H.; Gao H.-J. Stereoselective On-Surface Cyclodehydrofluorization of a Tetraphenylporphyrin and Homochiral Self-Assembly. Angew. Chem., Int. Ed. 2020, 59, 17413–17416. 10.1002/anie.202005425. PubMed DOI
Zhao Y.; Jiang K.; Li C.; Liu Y.; Xu C.; Zheng W.; Guan D.; Li Y.; Zheng H.; Liu C.; Luo W.; Jia J.; Zhuang X.; Wang S. Precise Control of π-Electron Magnetism in Metal-Free Porphyrins. J. Am. Chem. Soc. 2020, 142, 18532–18540. 10.1021/jacs.0c07791. PubMed DOI
Rascon E. C.; Riss A.; Matěj A.; Wiengarten A.; Mutombo P.; Soler D.; Jelinek P.; Auwärter W. On-Surface Synthesis of Square-Type Porphyrin Tetramers with Central Antiaromatic Cyclooctatetraene Moiety. J. Am. Chem. Soc. 2023, 145, 967–977. 10.1021/jacs.2c10088. PubMed DOI
Otsuki J. STM Studies on Porphyrins. Coord. Chem. Rev. 2010, 254, 2311–2341. 10.1016/j.ccr.2009.12.038. DOI
Zhang Y.; Lu J.; Zhou H.; Zhang G.; Ruan Z.; Zhang Y.; Zhang H.; Sun S.; Niu G.; Fu B.; Yang B.; Chen L.; Gao L.; Cai J. Highly Regioselective Cyclodehydrogenation of Diphenylporphyrin on Metal Surfaces. ACS Nano 2023, 17, 13575–13583. 10.1021/acsnano.3c02204. PubMed DOI
Wu F.; Zhan S.; Yang L.; Zhuo Z.; Wang X.; Li X.; Luo Y.; Jiang J. Spatial Confinement of a Carbon Nanocone for an Efficient Oxygen Evolution Reaction. J. Phys. Chem. Lett. 2021, 12, 2252–2258. 10.1021/acs.jpclett.1c00267. PubMed DOI
Hiroto S.; Miyake Y.; Shinokubo H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem. Rev. 2017, 117, 2910–3043. 10.1021/acs.chemrev.6b00427. PubMed DOI
Mandal A. K.; Taniguchi M.; Diers J. R.; Niedzwiedzki D. M.; Kirmaier C.; Lindsey J. S.; Bocian D. F.; Holten D. Photophysical Properties and Electronic Structure of Porphyrins Bearing Zero to Four Meso-Phenyl Substituents: New Insights into Seemingly Well Understood Tetrapyrroles. J. Phys. Chem. A 2016, 120, 9719–9731. 10.1021/acs.jpca.6b09483. PubMed DOI
Suijkerbuijk B. M. J. M.; Klein Gebbink R. J. M. Merging Porphyrins with Organometallics: Synthesis and Applications. Angew. Chem. Int. Ed 2008, 47, 7396–7421. 10.1002/anie.200703362. PubMed DOI
Pijeat J.; Dappe Y. J.; Thuéry P.; Campidelli S. Synthesis and Suzuki–Miyaura Cross Coupling Reactions for Post-Synthetic Modification of a Tetrabromo-Anthracenyl Porphyrin. Org. Biomol. Chem. 2018, 16, 8106–8114. 10.1039/C8OB02150C. PubMed DOI
Cooper C.; Paul R.; Alsaleh A.; Washburn S.; Rackers W.; Kumar S.; Nesterov V. N.; D’Souza F.; Vinogradov S. A.; Wang H. Naphthodithiophene-Fused Porphyrins: Synthesis, Characterization, and Impact of Extended Conjugation on Aromaticity. Chem. - Eur. J. 2023, 29, e20230201310.1002/chem.202302013. PubMed DOI PMC
Davis N. K. S.; Thompson A. L.; Anderson H. L. A Porphyrin Fused to Four Anthracenes. J. Am. Chem. Soc. 2011, 133, 30–31. 10.1021/ja109671f. PubMed DOI
Davis N. K. S.; Thompson A. L.; Anderson H. L. Bis-Anthracene Fused Porphyrins: Synthesis, Crystal Structure, and Near-IR Absorption. Org. Lett. 2010, 12, 2124–2127. 10.1021/ol100619p. PubMed DOI
Kurotobi K.; Kim K. S.; Noh S. B.; Kim D.; Osuka A. A Quadruply Azulene-Fused Porphyrin with Intense Near-IR Absorption and a Large Two-Photon Absorption Cross Section. Angew. Chem., Int. Ed. 2006, 45, 3944–3947. 10.1002/anie.200600892. PubMed DOI
Davis N. K. S.; Pawlicki M.; Anderson H. L. Expanding the Porphyrin π-System by Fusion with Anthracene. Org. Lett. 2008, 10, 3945–3947. 10.1021/ol801500b. PubMed DOI
Gill H. S.; Harmjanz M.; Santamaría J.; Finger I.; Scott M. J. Facile Oxidative Rearrangement of Dispiro-Porphodimethenes to Nonplanar and Sheetlike Porphyrins with Intense Absorptions in the Near-IR Region. Angew. Chem., Int. Ed. 2004, 43, 485–490. 10.1002/anie.200352762. PubMed DOI
Diev V. V.; Hanson K.; Zimmerman J. D.; Forrest S. R.; Thompson M. E. Fused Pyrene–Diporphyrins: Shifting Near-Infrared Absorption to 1.5 Mm and Beyond. Angew. Chem., Int. Ed. 2010, 49, 5523–5526. 10.1002/anie.201002669. PubMed DOI
Jiao C.; Huang K.-W.; Guan Z.; Xu Q.-H.; Wu J. N-Annulated Perylene Fused Porphyrins with Enhanced Near-IR Absorption and Emission. Org. Lett. 2010, 12, 4046–4049. 10.1021/ol1016383. PubMed DOI
Richeter S.; Jeandon C.; Kyritsakas N.; Ruppert R.; Callot H. J. Preparation of Six Isomeric Bis-Acylporphyrins with Chromophores Reaching the Near-Infrared via Intramolecular Friedel–Crafts Reaction. J. Org. Chem. 2003, 68, 9200–9208. 10.1021/jo035108m. PubMed DOI
Saegusa Y.; Ishizuka T.; Komamura K.; Shimizu S.; Kotani H.; Kobayashi N.; Kojima T. Ring-Fused Porphyrins: Extension of π-Conjugation Significantly Affects the Aromaticity and Optical Properties of the Porphyrin π-Systems and the Lewis Acidity of the Central Metal Ions. Phys. Chem. Chem. Phys. 2015, 17, 15001–15011. 10.1039/C5CP01420D. PubMed DOI
Tokuji S.; Takahashi Y.; Shinmori H.; Shinokubo H.; Osuka A. Synthesis of a Pyridine-Fused Porphyrinoid: Oxopyridochlorin. Chem. Commun. 2009, 1028–1030. 10.1039/b819284g. PubMed DOI
Lewtak J. P.; Gryko D. T. Synthesis of π-Extended Porphyrins via Intramolecular Oxidative Coupling. Chem. Commun. 2012, 48, 10069–10086. 10.1039/c2cc31279d. PubMed DOI
Moss A.; Jang Y.; Arvidson J.; N Nesterov V.; D’Souza F.; Wang H. Aromatic Heterobicycle-Fused Porphyrins: Impact on Aromaticity and Excited State Electron Transfer Leading to Long-Lived Charge Separation. Chem. Sci. 2022, 13, 9880–9890. 10.1039/D2SC03238D. PubMed DOI PMC
Liu Z.; Fu S.; Liu X.; Narita A.; Samorì P.; Bonn M.; Wang H. I. Small Size, Big Impact: Recent Progress in Bottom-Up Synthesized Nanographenes for Optoelectronic and Energy Applications. Adv. Sci. 2022, 9, 210605510.1002/advs.202106055. PubMed DOI PMC
Björk J.; Hanke F. Towards Design Rules for Covalent Nanostructures on Metal Surfaces. Chem. - Eur. J. 2014, 20, 928–934. 10.1002/chem.201303559. PubMed DOI
Clair S.; de Oteyza D. G. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019, 119, 4717–4776. 10.1021/acs.chemrev.8b00601. PubMed DOI PMC
Song S.; Su J.; Telychko M.; Li J.; Li G.; Li Y.; Su C.; Wu J.; Lu J. On-Surface Synthesis of Graphene Nanostructures with π-Magnetism. Chem. Soc. Rev. 2021, 50, 3238–3262. 10.1039/D0CS01060J. PubMed DOI
Gaweł P.; Foroutan-Nejad C. Carbon Rings Push Limits of Chemical Theories. Nature 2023, 623, 922–924. 10.1038/d41586-023-03575-5. PubMed DOI
Cai Z.-F.; Chen T.; Wang D. Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling Microscopy. J. Phys. Chem. Lett. 2023, 14, 2463–2472. 10.1021/acs.jpclett.2c03943. PubMed DOI
Shen Q.; Gao H.-Y.; Fuchs H. Frontiers of On-Surface Synthesis: From Principles to Applications. Nano Today 2017, 13, 77–96. 10.1016/j.nantod.2017.02.007. DOI
Xing G.-Y.; Zhu Y.-C.; Li D.-Y.; Liu P.-N. On-Surface Cross-Coupling Reactions. J. Phys. Chem. Lett. 2023, 14, 4462–4470. 10.1021/acs.jpclett.3c00344. PubMed DOI
Qin T.; Wang T.; Zhu J. Recent Progress in On-Surface Synthesis of Nanoporous Graphene Materials. Commun. Chem. 2024, 7, 15410.1038/s42004-024-01222-2. PubMed DOI PMC
Sooambar C.; Troiani V.; Bruno C.; Marcaccio M.; Paolucci F.; Listorti A.; Belbakra A.; Armaroli N.; Magistrato A.; Zorzi R. D.; Geremia S.; Bonifazi D. Synthesis, Photophysical, Electrochemical, and Electrochemiluminescent Properties of 5,15-Bis(9-Anthracenyl)Porphyrin Derivatives. Org. Biomol. Chem. 2009, 7, 2402–2413. 10.1039/b820210a. PubMed DOI
Volz H.; Schäffer H. Mesosubstituted Porphyrins. III. 5,10,15,20-Tetraanthracenylporphyrin. Chem.-Ztg. 1985, 109, 308–309.
Wäckerlin C. On-Surface Hydrogen/Deuterium Isotope Exchange in Polycyclic Aromatic Hydrocarbons. Angew. Chem. Int. Ed. 2021, 60, 8446–8449. 10.1002/ange.202015552. PubMed DOI
Cai J.; Ruffieux P.; Jaafar R.; Bieri M.; Braun T.; Blankenburg S.; Muoth M.; Seitsonen A. P.; Saleh M.; Feng X.; Müllen K.; Fasel R. Atomically Precise Bottom-up Fabrication of Graphene Nanoribbons. Nature 2010, 466, 470–473. 10.1038/nature09211. PubMed DOI
Mateo L. M.; Sun Q.; Liu S.-X.; Bergkamp J. J.; Eimre K.; Pignedoli C. A.; Ruffieux P.; Decurtins S.; Bottari G.; Fasel R.; Torres T. On-Surface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids. Angew. Chem., Int. Ed. 2020, 59, 1334–1339. 10.1002/anie.201913024. PubMed DOI
Kawai S.; Ishikawa A.; Ishida S.; Yamakado T.; Ma Y.; Sun K.; Tateyama Y.; Pawlak R.; Meyer E.; Saito S.; Osuka A. On-Surface Synthesis of Porphyrin-Complex Multi-Block Co-Oligomers by Defluorinative Coupling. Angew. Chem., Int. Ed. 2022, 61, e20211469710.1002/anie.202114697. PubMed DOI
Sen D.; Błoński P.; de la Torre B.; Jelínek P.; Otyepka M. Thermally Induced Intra-Molecular Transformation and Metalation of Free-Base Porphyrin on Au(111) Surface Steered by Surface Confinement and Ad-Atoms. Nanoscale Adv. 2020, 2, 2986–2991. 10.1039/D0NA00401D. PubMed DOI PMC
Lowe B.; Hellerstedt J.; Matěj A.; Mutombo P.; Kumar D.; Ondráček M.; Jelinek P.; Schiffrin A. Selective Activation of Aromatic C–H Bonds Catalyzed by Single Gold Atoms at Room Temperature. J. Am. Chem. Soc. 2022, 144, 21389–21397. 10.1021/jacs.2c10154. PubMed DOI
Mendieta-Moreno J. I.; Mallada B.; de la Torre B.; Cadart T.; Kotora M.; Jelínek P. Unusual Scaffold Rearrangement in Polyaromatic Hydrocarbons Driven by Concerted Action of Single Gold Atoms on a Gold Surface. Angew. Chem., Int. Ed. 2022, 61, e20220801010.1002/anie.202208010. PubMed DOI
Björk J.; Sánchez-Sánchez C.; Chen Q.; Pignedoli C. A.; Rosen J.; Ruffieux P.; Feng X.; Narita A.; Müllen K.; Fasel R. The Role of Metal Adatoms in a Surface-Assisted Cyclodehydrogenation Reaction on a Gold Surface. Angew. Chem., Int. Ed. 2022, 61, e20221235410.1002/anie.202212354. PubMed DOI PMC
Frezza F.; Matěj A.; Sánchez-Grande A.; Carrera M.; Mutombo P.; Kumar M.; Curiel D.; Jelínek P. On-Surface Synthesis of a Radical 2D Supramolecular Organic Framework. J. Am. Chem. Soc. 2024, 146, 3531–3538. 10.1021/jacs.3c13702. PubMed DOI PMC
Frampton E. S.; Edmondson M.; Judd C. J.; Duncan D. A.; Jones R. G.; Saywell A. Self-Metalation of Tetraphenyl Porphyrin on Au(111): Structural Characterisation via X-Ray Standing Wave Analysis. Inorg. Chim. Acta 2023, 558, 12171810.1016/j.ica.2023.121718. DOI
Edmondson M.; Frampton E. S.; Judd C. J.; Champness N. R.; Jones R. G.; Saywell A. Order, Disorder, and Metalation of Tetraphenylporphyrin (2H-TPP) on Au(111). Chem. Commun. 2022, 58, 6247–6250. 10.1039/D2CC00820C. PubMed DOI
Kalashnyk N.; Daher Mansour M.; Pijeat J.; Plamont R.; Bouju X.; Balaban T. S.; Campidelli S.; Masson L.; Clair S. Edge-On Self-Assembly of Tetra-Bromoanthracenyl-Porphyrin on Silver Surfaces. J. Phys. Chem. C 2020, 124, 22137–22142. 10.1021/acs.jpcc.0c05908. DOI
Mishra S.; Yao X.; Chen Q.; Eimre K.; Gröning O.; Ortiz R.; Di Giovannantonio M.; Sancho-García J. C.; Fernández-Rossier J.; Pignedoli C. A.; Müllen K.; Ruffieux P.; Narita A.; Fasel R. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021, 13, 581–586. 10.1038/s41557-021-00678-2. PubMed DOI
Stöckl Q. S.; Hsieh Y.-C.; Mairena A.; Wu Y.-T.; Ernst K.-H. Aggregation of C70-Fragment Buckybowls on Surfaces: π–H and π–π Bonding in Bowl Up-Side-Down Ensembles. J. Am. Chem. Soc. 2016, 138, 6111–6114. 10.1021/jacs.6b02412. PubMed DOI
Wang T.; Zhu J. Confined On-Surface Organic Synthesis: Strategies and Mechanisms. Surf. Sci. Rep. 2019, 74, 97–140. 10.1016/j.surfrep.2019.05.001. DOI
Cai Z.; She L.; He Y.; Wu L.; Cai L.; Zhong D. Halogen-Free On-Surface Synthesis of Rylene-Type Graphene Nanoribbons. Macromol. Chem. Phys. 2017, 218, 170015510.1002/macp.201700155. DOI
Klaasen H.; Liu L.; Meng X.; Held P. A.; Gao H.-Y.; Barton D.; Mück-Lichtenfeld C.; Neugebauer J.; Fuchs H.; Studer A. Reaction Selectivity in On-Surface Chemistry by Surface Coverage Control—Alkyne Dimerization versus Alkyne Trimerization. Chem. - Eur. J. 2018, 24, 15303–15308. 10.1002/chem.201802848. PubMed DOI
Fesser P.; Iacovita C.; Wäckerlin C.; Vijayaraghavan S.; Ballav N.; Howes K.; Gisselbrecht J.-P.; Crobu M.; Boudon C.; Stöhr M.; Jung T. A.; Diederich F. Visualizing the Product of a Formal Cycloaddition of 7,7,8,8-Tetracyano-p-Quinodimethane (TCNQ) to an Acetylene-Appended Porphyrin by Scanning Tunneling Microscopy on Au(111). Chem. - Eur. J. 2011, 17, 5246–5250. 10.1002/chem.201100733. PubMed DOI
Franke M.; Marchini F.; Steinrück H.-P.; Lytken O.; Williams F. J. Surface Porphyrins Metalate with Zn Ions from Solution. J. Phys. Chem. Lett. 2015, 6, 4845–4849. 10.1021/acs.jpclett.5b02218. PubMed DOI
Herritsch J.; Kachel S. R.; Fan Q.; Hutter M.; Heuplick L. J.; Münster F.; Gottfried J. M. On-Surface Porphyrin Transmetalation with Pb/Cu Redox Exchange. Nanoscale 2021, 13, 13241–13248. 10.1039/D1NR04180K. PubMed DOI
Hötger D.; Abufager P.; Morchutt C.; Alexa P.; Grumelli D.; Dreiser J.; Stepanow S.; Gambardella P.; Busnengo H. F.; Etzkorn M.; Gutzler R.; Kern K. On-Surface Transmetalation of Metalloporphyrins. Nanoscale 2018, 10, 21116–21122. 10.1039/C8NR04786C. PubMed DOI
Rieger A.; Schnidrig S.; Probst B.; Ernst K.-H.; Wäckerlin C. Ranking the Stability of Transition-Metal Complexes by On-Surface Atom Exchange. J. Phys. Chem. Lett. 2017, 8, 6193–6198. 10.1021/acs.jpclett.7b02834. PubMed DOI
Loos M.; Gerber C.; Corona F.; Hollender J.; Singer H. Accelerated Isotope Fine Structure Calculation Using Pruned Transition Trees. Anal. Chem. 2015, 87, 5738–5744. 10.1021/acs.analchem.5b00941. PubMed DOI
Horcas I.; Fernández R.; Gómez-Rodríguez J. M.; Colchero J.; Gómez-Herrero J.; Baro A. M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 01370510.1063/1.2432410. PubMed DOI