• This record comes from PubMed

Thermally induced intra-molecular transformation and metalation of free-base porphyrin on Au(111) surface steered by surface confinement and ad-atoms

. 2020 Jul 14 ; 2 (7) : 2986-2991. [epub] 20200527

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

We investigated chemical transformations of a fluorinated free-base porphyrin, 5,10,15,20-tetrakis(4-fluorophenyl)-21,23H-porphyrin (2H-4FTPP) under a Au(111) surface confinement and including gold adatoms by using an experiment and density functional theory based first-principles calculations. Annealing of 2H-4FTPP led to cyclodehydrogenation of the molecule to a π-extended fused aromatic planar compound, 2H-4FPP, and metallation of the porphyrin ring by Au atoms to Au-4FPP complex. Noticeable lowering of bond-dissociation energies of the pyrrole's C-H bonds of the Au(111) supported molecule with respect to their values in the gas phase explained the observed on-surface planarization. Our findings also indicate that Au adatoms may catalyze cleavage of C-H/F bonds in temperature-initiated processes on Au surfaces. BDEs and explicit inclusion of Au adatoms helps to rationalize thermally induced chemical reactions on the respective surface.

See more in PubMed

Grill L. Dyer M. Lafferentz L. Persson M. Peters M. V. Hecht S. Nat. Nanotechnol. 2007;2:687. doi: 10.1038/nnano.2007.346. PubMed DOI

On-surface synthesis, Proceedings of the International Workshop On-Surface Synthesis, ed A. Gourdon, Springer, 2014

Clair S. de Oteyza D. G. Chem. Rev. 2019;119:4717. doi: 10.1021/acs.chemrev.8b00601. PubMed DOI PMC

Gross L. Mohn F. Moll N. Liljeroth P. Meyer G. Science. 2009;325:1110. doi: 10.1126/science.1176210. PubMed DOI

Jelínek P. J. Phys.: Condens. Matter. 2017;29:343002. doi: 10.1088/1361-648X/aa76c7. PubMed DOI

de Oteyza D. G. Gorman P. Chen Y.-Ch. Wickenburg S. Riss A. Mowbray D. J. Etkin G. Pedramrazi Z. Tsai H.-Z. Rubio A. Crommie M. F. Fischer F. R. Science. 2013;340:1434. doi: 10.1126/science.1238187. PubMed DOI

Antczak G. and Ehrlich G., Surface Diffusion: Metals, Metal Atoms, and Clusters. Cambridge University Press, 2010

Riss A. Pérez Paz A. Wickenburg S. Tsai H.-Z. De Oteyza D. G. Bradley A. J. Ugeda M. M. Gorman P. Jung H. S. Crommie M. F. Rubio A. Fischer F. R. Nat. Chem. 2016;8:678. doi: 10.1038/nchem.2506. PubMed DOI

Henkelman G. Jónsson H. J. Chem. Phys. 2000;113:9901. doi: 10.1063/1.1329672. DOI

Björk J. J. Phys.: Condens. Matter. 2016;28:083002. doi: 10.1088/0953-8984/28/8/083002. PubMed DOI

Bieri M. Nguyen M.-T. Gröning O. Cai J. Treier M. Aït-Mansour K. Ruffieux P. Pignedoli C. A. Passerone D. Kastler M. Müllen K. Fasel R. J. Am. Chem. Soc. 2010;132:16669. doi: 10.1021/ja107947z. PubMed DOI

Lunghi A. Iannuzzi M. Sessoli R. Totti F. J. Mater. Chem. C. 2015;3:7294. doi: 10.1039/C5TC00394F. DOI

Telychko M. Su J. Gallardo A. Gu Y. Mendieta-Moreno J. I. Qi D. Tadich A. Song S. Lyu P. Qiu Z. Fang H. Koh M. J. Wu J. Jelínek P. Lu J. Angew. Chem., Int. Ed. 2019;58:18591. doi: 10.1002/anie.201909074. PubMed DOI

Auwärter W. Ecija D. Klappenberger F. Barth J. V. Nat. Chem. 2015;7:105. doi: 10.1038/nchem.2159. PubMed DOI

Gottfried J. M. Surf. Sci. Rep. 2015;70:259. doi: 10.1016/j.surfrep.2015.04.001. DOI

Marbach H. Acc. Chem. Res. 2015;48:2649. doi: 10.1021/acs.accounts.5b00243. PubMed DOI

Shubina T. E. Marbach H. Flechtner K. Kretschmann A. Jux N. Buchner F. Steinrück H.-P. Clark T. Gottfried J. M. J. Am. Chem. Soc. 2007;129:9476. doi: 10.1021/ja072360t. PubMed DOI

Mette G. Sutter D. Gurdal Y. Schnidrig S. Probst B. Iannuzzi M. Hutter J. Alberto R. Osterwalder J. Nanoscale. 2016;8:7958. doi: 10.1039/C5NR08953K. PubMed DOI

Kresse G. Furthmüller J. Comput. Mater. Sci. 1996;6:15. doi: 10.1016/0927-0256(96)00008-0. DOI

Kresse G. Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Blochl P. E. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;50:17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G. Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Perdew J. P. Ernzerhof M. J. Chem. Phys. 1996;105:9982. doi: 10.1063/1.472933. DOI

Tang W. Sanville E. Henkelman G. J. Phys.: Condens. Matter. 2009;21:084204. doi: 10.1088/0953-8984/21/8/084204. PubMed DOI

Frisch M. J., et al., Gaussian 09, Revision D.01, Wallingford CT, 2009

B3P86 functional is defined by its implementation in the Gaussian program

Stephens P. J. Devlin F. J. Chabalowski C. F. Frisch M. J. J. Phys. Chem. 1994;98(45):11623. doi: 10.1021/j100096a001. DOI

de la Torre B. Švec M. Hapala P. Redondo J. Krejčí O. Lo R. Manna D. Sarmah A. Nachtigallová D. Tuček J. Błoński P. Otyepka M. Zbořil R. Hobza P. Jelínek P. Nat. Commun. 2018;9:2831. doi: 10.1038/s41467-018-05163-y. PubMed DOI PMC

Kaiser K. Gross L. Schulz F. ACS Nano. 2019;13:6947. doi: 10.1021/acsnano.9b01852. PubMed DOI PMC

Kestell J. Walker J. Bai Y. Boscoboinik J. A. Garvey M. Tysoe W. T. J. Phys. Chem. C. 2016;120(17):9270. doi: 10.1021/acs.jpcc.6b01613. DOI

Feng Y. Liu L. Wang J.-T. Huang H. Guo Q.-X. J. Chem. Inf. Comput. Sci. 2003;43:2005. doi: 10.1021/ci034033k. PubMed DOI

Trouillas P. Marsal P. Siri D. Lazzaroni R. Duroux J.-L. Food Chem. 2006;97:679. doi: 10.1016/j.foodchem.2005.05.042. DOI

Cirera B. de la Torre B. Moreno D. Ondráček M. Zbořil R. Miranda R. Jelínek P. Écija D. Chem. Mater. 2019;31:3248. doi: 10.1021/acs.chemmater.9b00125. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...