On-surface synthesis of non-benzenoid conjugated polymers by selective atomic rearrangement of ethynylarenes
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36794197
PubMed Central
PMC9906656
DOI
10.1039/d2sc04722e
PII: d2sc04722e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Here, we report a new on-surface synthetic strategy to precisely introduce five-membered units into conjugated polymers from specifically designed precursor molecules that give rise to low-bandgap fulvalene-bridged bisanthene polymers. The selective formation of non-benzenoid units is finely controlled by the annealing parameters, which govern the initiation of atomic rearrangements that efficiently transform previously formed diethynyl bridges into fulvalene moieties. The atomically precise structures and electronic properties have been unmistakably characterized by STM, nc-AFM, and STS and the results are supported by DFT theoretical calculations. Interestingly, the fulvalene-bridged bisanthene polymers exhibit experimental narrow frontier electronic gaps of 1.2 eV on Au(111) with fully conjugated units. This on-surface synthetic strategy can potentially be extended to other conjugated polymers to tune their optoelectronic properties by integrating five-membered rings at precise sites.
Zobrazit více v PubMed
Qiu Z. Hammer B. A. G. Müllen K. Conjugated Polymers - Problems and Promises. Prog. Polym. Sci. 2020;100:101179. doi: 10.1016/J.PROGPOLYMSCI.2019.101179. doi: 10.1016/j.progpolymsci.2019.101179. DOI
Roncali J. Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications. Macromol. Rapid Commun. 2007;28(17):1761–1775. doi: 10.1002/marc.200700345. doi: 10.1002/marc.200700345. DOI
Olivier Y. Niedzialek D. Lemaur V. Pisula W. Müllen K. Koldemir U. Reynolds J. R. Lazzaroni R. Cornil J. Beljonne D. 25th Anniversary Article: High-Mobility Hole and Electron Transport Conjugated Polymers: How Structure Defines Function. Adv. Mater. 2014;26(14):2119–2136. doi: 10.1002/ADMA.201305809. doi: 10.1002/adma.201305809. PubMed DOI
Parkhurst R. R., Swager T. M., Siegel J. S. and Wu Y.-T., Polyarenes II, Springer International Publishing, 2014, vol. 350, 10.1007/978-3-319-07302-6 DOI
Zeng Z. Shi X. Chi C. López Navarrete J. T. Casado J. Wu J. Pro-Aromatic and Anti-Aromatic p-Conjugated Molecules: An Irresistible Wish to Be Diradicals. Chem. Soc. Rev. 2015;44(18):6578–6596. doi: 10.1039/c5cs00051c. doi: 10.1039/C5CS00051C. PubMed DOI
Frederickson C. K. Rose B. D. Haley M. M. Explorations of the Indenofluorenes and Expanded Quinoidal Analogues. Acc. Chem. Res. 2017;50(4):977–987. doi: 10.1021/acs.accounts.7b00004. doi: 10.1021/acs.accounts.7b00004. PubMed DOI
Liu J. Mishra S. Pignedoli C. A. Passerone D. Urgel J. I. Fabrizio A. Lohr T. G. Ma J. Komber H. Baumgarten M. Corminboeuf C. Berger R. Ruffieux P. Müllen K. Fasel R. Feng X. Open-Shell Nonbenzenoid Nanogra-phenes Containing Two Pairs of Pentagonal and Heptagonal Rings. J. Am. Chem. Soc. 2019;141(30):12011–12020. doi: 10.1021/jacs.9b04718. doi: 10.1021/jacs.9b04718. PubMed DOI
Di Giovannantonio M. Eimre K. Yakutovich A. V. Chen Q. Mishra S. Urgel J. I. Pignedoli C. A. Ruffieux P. Müllen K. Narita A. Fasel R. On-Surface Synthesis of Anti-aromatic and Open-Shell Indeno[2,1- b]Fluorene Polymers and Their Lateral Fusion into Porous Ribbons. J. Am. Chem. Soc. 2019;141(31):12346–12354. doi: 10.1021/JACS.9B05335. doi: 10.1021/jacs.9b05335. PubMed DOI
Mishra S. Beyer D. Berger R. Liu J. Grö O. Urgel J. I. Müllen K. Ruffieux P. Feng X. Fasel R. Topological Defect-Induced Magnetism in a Nanographene. J. Am. Chem. Soc. 2020;142(3):1147–1152. doi: 10.1021/jacs.9b09212. doi: 10.1021/jacs.9b09212. PubMed DOI
Fujii S. Marqués-González S. Shin J.-Y. Shinokubo H. Masuda T. Nishino T. Narendra P. A. Vázquez H. Kiguchi M. Highly-Conducting Molecular Circuits Based on Antiaromaticity. Nat. Commun. 2017;8(1):1–8. doi: 10.1038/ncomms15984. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC
Zhang G. P. Xie Z. Song Y. Wei M.-Z. Hu G.-C. Wang C.-K. Is There a Specific Correlation between Conductance and Molecular Aromaticity in Single-Molecule Junctions? Org. Electron. 2017;48:29–34. doi: 10.1016/J.ORGEL.2017.05.032. doi: 10.1016/j.orgel.2017.05.032. DOI
Gil-Guerrero S. Ramos-Berdullas N. Mandado M. Can Aromaticity Enhance the Electron Transport in Molecular Wires? Org. Electron. 2018;61:177–184. doi: 10.1016/J.ORGEL.2018.05.043. doi: 10.1016/j.orgel.2018.05.043. DOI
Chujo Y., Conjugated Polymer Synthesis: Methods and Reactions, John Wiley & Sons, 2011
Grill L. Hecht S. Covalent On-Surface Polymerization. Nat. Chem. 2020;12(2):115–130. doi: 10.1038/s41557-019-0392-9. doi: 10.1038/s41557-019-0392-9. PubMed DOI
Clair S. de Oteyza D. G. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019;119(7):4717–4776. doi: 10.1021/ACS.CHEMREV.8B00601. doi: 10.1021/acs.chemrev.8b00601. PubMed DOI PMC
Grill L. Dyer M. Lafferentz L. Persson M. Peters M. V. Hecht S. Nano-Architectures by Covalent Assembly of Molecular Building Blocks. Nat. Nanotechnol. 2007;2(11):687–691. doi: 10.1038/nnano.2007.346. doi: 10.1038/nnano.2007.346. PubMed DOI
Mishra S. Lohr T. G. Pignedoli C. A. Liu J. Berger R. Urgel J. I. Müllen K. Feng X. Ruffieux P. Fasel R. Tailoring Bond Topologies in Open-Shell Graphene Nanostructures. ACS Nano. 2018;12(12):11917–11927. doi: 10.1021/acsnano.8b07225. doi: 10.1021/acsnano.8b07225. PubMed DOI
de Oteyza D. G. Gorman P. Chen Y.-C. Wickenburg S. Riss A. Mowbray D. J. Etkin G. Pedramrazi Z. Tsai H.-Z. Rubio A. Crommie M. F. Fischer F. R. Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reac-tions. Science. 2013;340(6139):1434–1437. doi: 10.1126/SCIENCE.1238187. doi: 10.1126/science.1238187. PubMed DOI
Riss A. Pérez Paz A. Wickenburg S. Tsai H.-Z. de Oteyza D. G. Bradley A. J. Ugeda M. M. Gorman P. Sae Jung H. Crommie M. F. Rubio A. Fischer F. R. Imaging Single-Molecule Reaction Intermediates Stabilized by Surface Dissipation and Entropy. Nat. Chem. 2016;8(7):678–683. doi: 10.1038/NCHEM.2506. doi: 10.1038/nchem.2506. PubMed DOI
Shiotari A. Nakae T. Iwata K. Mori S. Okujima T. Uno H. Sakaguchi H. Sugimoto Y. Strain-Induced Skeletal Rearrangement of a Polycyclic Aromatic Hydrocarbon on a Copper Surface. Nat. Commun. 2017;8(1):1–8. doi: 10.1038/ncomms16089. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC
Li J. Sanz S. Corso M. Choi D. J. Peña D. Frederiksen T. Pascual J. I. Single Spin Localization and Manipula-tion in Graphene Open-Shell Nanostructures. Nat. Commun. 2019;10(1):1–7. doi: 10.1038/s41467-018-08060-6. doi: 10.1038/s41467-018-07882-8. PubMed DOI PMC
Pavliček N. Gawel P. Kohn D. R. Majzik Z. Xiong Y. Meyer G. Anderson H. L. Gross L. Polyyne Formation via Skeletal Rearrangement Induced by Atomic Manipulation. Nat. Chem. 2018;10(8):853–858. doi: 10.1038/s41557-018-0067-y. doi: 10.1038/s41557-018-0067-y. PubMed DOI PMC
Schuler B. Fatayer S. Mohn F. Moll N. Pavliček N. Meyer G. Peña D. Gross L. Reversible Bergman Cyclization by Atomic Manipulation. Nat. Chem. 2016;8(3):220–224. doi: 10.1038/NCHEM.2438. doi: 10.1038/nchem.2438. PubMed DOI
Tobe Y. Non-Alternant Non-Benzenoid Aromatic Compounds: Past, Present, and Future. Chem. Rec. 2015;15(1):86–96. doi: 10.1002/TCR.201402077. doi: 10.1002/tcr.201402077. PubMed DOI
Riss A. Wickenburg S. Gorman P. Tan L. Z. Tsai H. Z. de Oteyza D. G. Chen Y.-C. Bradley A. J. Ugeda M. M. Etkin G. Louie S. G. Fischer F. R. Crommie M. F. Local Electronic and Chemical Structure of Oligo-Acetylene Deriva-tives Formed through Radical Cyclizations at a Surface. Nano Lett. 2014;14(5):2251–2255. doi: 10.1021/NL403791Q. doi: 10.1021/nl403791q. PubMed DOI PMC
Riss A. Pérez Paz A. Wickenburg S. Tsai H.-Z. de Oteyza D. G. Bradley A. J. Ugeda M. M. Gorman P. Sae Jung H. Crommie M. F. Rubio A. Fischer F. R. Imaging Single-Molecule Reaction Intermediates Stabilized by Surface Dissipation and Entropy. Nat. Chem. 2016;8(7):678–683. doi: 10.1038/NCHEM.2506. doi: 10.1038/nchem.2506. PubMed DOI
Ruffieux P. Wang S. Yang B. Sánchez-Sánchez C. Liu J. Dienel T. Talirz L. Shinde P. Pignedoli C. A. Passerone D. Dumslaff T. Feng X. Müllen K. Fasel R. On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature. 2016;531(7595):489–492. doi: 10.1038/nature17151. doi: 10.1038/nature17151. PubMed DOI
Orchin M. Reggel L. Aromatic Cyclodehydrogenation. V. A Synthesis of Fluoranthene. J. Am. Chem. Soc. 1947;69(3):505–509. doi: 10.1021/JA01195A009. doi: 10.1021/ja01195a009. DOI
Mallada B. de la Torre B. Medieta-Moreno J. I. Nachtigallová D. Matěj A. Matoušek M. Mutombo P. Brabec J. Veis L. Cadart T. Kotora M. Jelínek P. On-Surface Strain-Driven Synthesis of Nonalternant Non-Benzenoid Aromatic Compounds Containing Four-to Eight-Membered Rings. J. Am. Chem. Soc. 2021;143(36):14694–14702. doi: 10.1021/jacs.1c06168. doi: 10.1021/jacs.1c06168. PubMed DOI
Mallada B. Chen Q. Chutora T. Sánchez-Grande A. Cirera B. Santos J. Martín N. Ecija D. Jelínek P. de la Torre B. Resolving Atomic-Scale Defects in Conjugated Polymers On-Surfaces. Chem.–Eur. J. 2022;28(48):e202200944. doi: 10.1002/CHEM.202200944. doi: 10.1002/chem.202200944. PubMed DOI
Márquez I. R. Ruíz Del Árbol N. Urgel J. I. Villalobos F. Fasel R. López M. F. Cuerva J. M. Martín-Gago J. A. Campaña A. G. Sánchez-Sánchez C. On-Surface Thermal Stability of a Graphenic Structure Incorporating a Tropone Moiety. Nanomaterials. 2022;12(3):488. doi: 10.3390/NANO12030488. doi: 10.3390/nano12030488. PubMed DOI PMC
Sánchez-Sánchez C. Dienel T. Nicolaï A. Kharche N. Liang L. Daniels C. Meunier V. Liu J. Feng X. Müllen K. Sánchez-Valencia J. R. Gröning O. Ruffieux P. Fasel R. On-Surface Synthesis and Characterization of Acene-Based Nanoribbons Incorporating Four-Membered Rings. Chem.–Eur. J. 2019;25(52):12074–12082. doi: 10.1002/CHEM.201901410. doi: 10.1002/chem.201901410. PubMed DOI
Liu M. Liu M. She L. Zha Z. Pan J. Li S. Li T. He Y. Cai Z. Wang J. Zheng Y. Qiu X. Zhong D. Graphene-like Nanoribbons Periodically Embedded with Four- and Eight-Membered Rings. Nat. Commun. 2017;8(1):1–7. doi: 10.1038/ncomms14924. doi: 10.1002/chem.201605561. PubMed DOI PMC
Fan Q. Martin-Jimenez D. Ebeling D. Krug C. K. Brechmann L. Kohlmeyer C. Hilt G. Hieringer W. Schirmeisen A. Gottfried J. M. Nanoribbons with Nonalternant Topology from Fusion of Polyazulene: Carbon Allotropes beyond Graphene. J. Am. Chem. Soc. 2019;141(44):17713–17720. doi: 10.1021/jacs.9b08060. doi: 10.1021/jacs.9b08060. PubMed DOI
Deyerling J. Pörtner M. Đorđević L. Riss A. Bonifazi D. Auwärter W. On-Surface Synthesis of Rigid Benzenoid- and Nonbenzenoid-Coupled Porphyrin–Graphene Nanoribbon Hybrids. J. Phys. Chem. C. 2022;126(19):8467–8476. doi: 10.1021/ACS.JPCC.2C00912. doi: 10.1021/acs.jpcc.2c00912. DOI
Di Giovannantonio M. Urgel J. I. Beser U. Yakutovich A. V. Wilhelm J. Pignedoli C. A. Ruffieux P. Narita A. Müllen K. Fasel R. On-Surface Synthesis of Indenofluorene Polymers by Oxidative Five-Membered Ring Formation. J. Am. Chem. Soc. 2018;140(10):3532–3536. doi: 10.1021/JACS.8B00587. doi: 10.1021/jacs.8b00587. PubMed DOI
Liu M. Liu M. Zha Z. Pan J. Qiu X. Li T. Wang J. Zheng Y. Zhong D. Thermally Induced Transformation of Nonhexagonal Carbon Rings in Graphene-like Nanoribbons. J. Phys. Chem. C. 2018;122(17):9586–9592. doi: 10.1021/ACS.JPCC.8B02565. doi: 10.1021/acs.jpcc.8b02565. DOI
Urgel J. I. Bock J. Di Giovannantonio M. Ruffieux P. Pignedoli C. A. Kivala M. Fasel R. On-Surface Synthesis of π-Conjugated Ladder-Type Polymers Comprising Nonbenzenoid Moieties. RSC Adv. 2021;11(38):23437–23441. doi: 10.1039/D1RA03253D. doi: 10.1039/D1RA03253D. PubMed DOI PMC
Hou I. C.-Y. Sun Q. Eimre K. Di Giovannantonio M. Urgel J. I. Ruffieux P. Narita A. Fasel R. Müllen K. On-Surface Synthesis of Unsaturated Carbon Nanostructures with Regularly Fused Pentagon-Heptagon Pairs. J. Am. Chem. Soc. 2020;142(23):10291–10296. doi: 10.1021/JACS.0C03635. doi: 10.1021/jacs.0c03635. PubMed DOI PMC
Gao H.-Y. Wagner H. Zhong D. Franke J.-H. Studer A. Fuchs H. Glaser Coupling at Metal Surfaces. Angew. Chem., Int. Ed. 2013;52(14):4024–4028. doi: 10.1002/ANIE.201208597. doi: 10.1002/anie.201208597. PubMed DOI
de la Torre B. Matěj A. Sánchez-Grande A. Cirera B. Mallada B. Rodríguez-Sánchez E. Santos J. Mendieta-Moreno J. I. Edalatmanesh S. Lauwaet K. Otyepka M. Medveď M. Buendía Á. Miranda R. Martín N. Jelínek P. Écija D. Tailoring π-Conjugation and Vibrational Modes to Steer on-Surface Synthesis of Pentalene-Bridged Ladder Polymers. Nat. Commun. 2020;11(1):4567. doi: 10.1038/s41467-020-18371-2. doi: 10.1038/s41467-020-18371-2. PubMed DOI PMC
Yang B. Lin H. Miao K. Zhu P. Liang L. Sun K. Zhang H. Fan J. Meunier V. Li Y. Li Q. Chi L. Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces. Angew. Chem. 2016;128(34):10035–10039. doi: 10.1002/ANGE.201602414. doi: 10.1002/ange.201602414. PubMed DOI
Krüger J. García F. Eisenhut F. Skidin D. Alonso J. M. Guitián E. Pérez D. Cuniberti G. Moresco F. Peña D. Decacene: On-Surface Generation. Angew. Chem., Int. Ed. 2017;56(39):11945–11948. doi: 10.1002/ANIE.201706156. doi: 10.1002/anie.201706156. PubMed DOI
Fudickar W. Linker T. Why Triple Bonds Protect Acenes from Oxidation and Decomposition. J. Am. Chem. Soc. 2012;134(36):15071–15082. doi: 10.1021/JA306056X. doi: 10.1021/ja306056x. PubMed DOI
Gao H.-Y. Held P. A. Amirjalayer S. Liu L. Timmer A. Schirmer B. Díaz Arado O. Mönig H. Mück-Lichtenfeld C. Neugebauer J. Studer A. Fuchs H. Intermolecular On-Surface σ-Bond Metathesis. J. Am. Chem. Soc. 2017;139(20):7012–7019. doi: 10.1021/JACS.7B02430. doi: 10.1021/jacs.7b02430. PubMed DOI
Sánchez-Grande A. de la Torre B. Santos J. Cirera B. Lauwaet K. Chutora T. Edalatmanesh S. Mutombo P. Rosen J. Zbořil R. Miranda R. Björk J. Jelínek P. Martín N. Écija D. On-Surface Synthesis of Ethynylene-Bridged Anthracene Polymers. Angew. Chem. 2019;131(20):6631–6635. doi: 10.1002/ANGE.201814154. doi: 10.1002/ange.201814154. PubMed DOI PMC
Sun Q. Yu X. Bao M. Liu M. Pan J. Zha Z. Cai L. Ma H. Yuan C. Qiu X. Xu W. Direct Formation of C–C Triple-Bonded Structural Motifs by On-Surface Dehalogenative Homocouplings of Tribromomethyl-Substituted Arenes. Angew. Chem., Int. Ed. 2018;57(15):4035–4038. doi: 10.1002/ANIE.201801056. doi: 10.1002/anie.201801056. PubMed DOI
Cioslowski J. Schimeczek M. Piskorz P. Moncrieff D. Thermal Rearrangement of Ethynylarenes to Cyclopenta fused Polycyclic Aromatic Hydrocarbons: An Electronic Structure Study. J. Am. Chem. Soc. 1999;121(15):3773–3778. doi: 10.1021/JA9836601. doi: 10.1021/ja9836601. DOI
Gross L. Mohn F. Moll N. Liljeroth P. Meyer G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325(5944):1110–1114. doi: 10.1126/science.1176210. doi: 10.1126/science.1176210. PubMed DOI
Lowe B. Hellerstedt J. Matěj A. Mutombo P. Kumar D. Ondráček M. Jelinek P. Schiffrin A. Selective Activation of Aromatic C-H Bonds Catalyzed by Single Gold Atoms at Room Temperature. J. Am. Chem. Soc. 2022;144(46):21389–21397. doi: 10.1021/jacs.2c10154. doi: 10.1021/jacs.2c10154. PubMed DOI
Gilmore K. Alabugin I. V. Cyclizations of Alkynes: Revisiting Baldwins Rules for Ring Closure. Chem. Rev. 2011;111(11):6513–6556. doi: 10.1021/CR200164Y. doi: 10.1021/cr200164y. PubMed DOI
Zhang Y.-Q. Kepčija N. Kleinschrodt M. Diller K. Fischer S. Papageorgiou A. C. Allegretti F. Björk J. Klyatskaya S. Klappenberger F. Ruben M. Barth J. V. Homo-Coupling of Terminal Alkynes on a Noble Metal Surface. Nat. Commun. 2012;3(1):1–8. doi: 10.1038/ncomms2291. PubMed DOI
Sen D. Błoński P. de la Torre B. Jelínek P. Otyepka M. Thermally Induced Intra-Molecular Transformation and Metalation of Free-Base Porphyrin on Au(111) Surface Steered by Surface Confinement and Ad-Atoms. Nanoscale Adv. 2020;2(7):2986–2991. doi: 10.1039/D0NA00401D. doi: 10.1039/D0NA00401D. PubMed DOI PMC
Glidewell C. Lloyd D. Mndo Study of Bond Orders in Some Conjugated BI- and Tri-Cyclic Hydrocarbons. Tetrahedron. 1984;40(21):4455–4472. doi: 10.1016/S0040-4020(01)98821-0. doi: 10.1016/S0040-4020(01)98821-0. DOI
Gross L. Mohn F. Moll N. Schuler B. Criado A. Guitián E. Peña D. Gourdon A. Meyer G. Bond-Order Discrimination by Atomic Force Microscopy. Science. 2012;337(6100):1326–1329. doi: 10.1126/science.1225621. doi: 10.1126/science.1225621. PubMed DOI
Kertesz M. Choi C. H. Yang S. Conjugated Polymers and Aromaticity. Chem. Rev. 2005;105(10):3448–3481. doi: 10.1021/CR990357P. doi: 10.1021/cr990357p. PubMed DOI
Schleyer P. V. R. Maerker C. Dransfeld A. Jiao H. van Eikema Hommes N. J. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996;118(26):6317–6318. doi: 10.1021/JA960582D. doi: 10.1021/ja960582d. PubMed DOI
Geuenich D. Hess K. Köhler F. Herges R. Anisotropy of the Induced Current Density (ACID), a General Method To Quantify and Visualize Electronic Delocalization. Chem. Rev. 2005;105(10):3758–3772. doi: 10.1021/cr0300901. doi: 10.1021/cr0300901. PubMed DOI
Cohen A. J. Mori-Sánchez P. Yang W. Insights into Current Limitations of Density Functional Theory. Science. 2008;321(5890):792–794. doi: 10.1126/SCIENCE.1158722. doi: 10.1126/science.1158722. PubMed DOI
Neaton J. B. Hybertsen M. S. Louie S. G. Renormalization of Molecular Electronic Levels at Metal-Molecule Interfaces. Phys. Rev. Lett. 2006;97(21):216405. doi: 10.1103/PHYSREVLETT.97.216405. doi: 10.1103/PhysRevLett.97.216405. PubMed DOI
Li G. Zhu R. Yang Y. Polymer Solar Cells. Nat. Photonics. 2012;6:153–161. doi: 10.1038/nphoton.2012.11. doi: 10.1038/nphoton.2012.11. DOI
Janssen R. A. J. Nelson J. Factors Limiting Device Efficiency in Organic Photovoltaics. Adv. Mater. 2013;25(13):1847–1858. doi: 10.1002/adma.201202873. doi: 10.1002/adma.201202873. PubMed DOI
Zhao Y. Guo Y. Liu Y. 25th Anniversary Article: Recent Advances in n-Type and Ambipolar Organic Field-Effect Transistors. Adv. Mater. 2013;25(38):5372–5391. doi: 10.1002/adma.201302315. doi: 10.1002/adma.201302315. PubMed DOI