• This record comes from PubMed

On-Surface Synthesis of Ethynylene-Bridged Anthracene Polymers

. 2019 May 13 ; 58 (20) : 6559-6563. [epub] 20190312

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
766555 H2020 European Research Council
320441 H2020 European Research Council

Engineering low-band-gap π-conjugated polymers is a growing area in basic and applied research. The main synthetic challenge lies in the solubility of the starting materials, which precludes advancements in the field. Here, we report an on-surface synthesis protocol to overcome such difficulties and produce poly(p-anthracene ethynylene) molecular wires on Au(111). To this aim, a quinoid anthracene precursor with =CBr2 moieties is deposited and annealed to 400 K, resulting in anthracene-based polymers. High-resolution nc-AFM measurements confirm the nature of the ethynylene-bridge bond between the anthracene moieties. Theoretical simulations illustrate the mechanism of the chemical reaction, highlighting three major steps: dehalogenation, diffusion of surface-stabilized carbenes, and homocoupling, which enables the formation of an ethynylene bridge. Our results introduce a novel chemical protocol to design π-conjugated polymers based on oligoacene precursors and pave new avenues for advancing the emerging field of on-surface synthesis.

See more in PubMed

Heeger A. J., Angew. Chem. Int. Ed. 2001, 40, 2591–2611; PubMed

Angew. Chem. 2001, 113, 2660–2682.

Guo X., Baumgarten M., Müllen K., Prog. Polym. Sci. 2013, 38, 1832–1908.

Facchetti A., Chem. Mater. 2011, 23, 733–758.

Grill L., Dyer M., Lafferentz L., Persson M., Peters M. V., Hecht S., Nat. Nanotechnol. 2007, 2, 687–691. PubMed

Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., Seitsonen A. P., Saleh M., Feng X., et al., Nature 2010, 466, 470–473. PubMed

Wiengarten A., Seufert K., Auwärter W., Ecija D., Diller K., Allegretti F., Bischoff F., Fischer S., Duncan D. A., Papageorgiou A. C., et al., J. Am. Chem. Soc. 2014, 136, 9346–9354. PubMed

Fan Q., Gottfried J. M., Zhu J., Acc. Chem. Res. 2015, 48, 2484–2494. PubMed

Talirz L., Ruffieux P., Fasel R., Adv. Mater. 2016, 28, 6222–6231. PubMed

Shen Q., Gao H.-Y., Fuchs H., Nano Today 2017, 13, 77–96.

Klappenberger F., Zhang Y.-Q., Björk J., Klyatskaya S., Ruben M., Barth J. V., Acc. Chem. Res. 2015, 48, 2140–2150. PubMed

Cirera B., Gimenez-Agullo N., Bjork J., Martinez-Pena F., Martin-Jimenez A., Rodriguez-Fernandez J., Pizarro A. M., Otero R., Gallego J. M., Ballester P., et al., Nat. Commun. 2016, 7, 11002. PubMed PMC

Sun Q., Zhang R., Qiu J., Liu R., Xu W., Adv. Mater. 2018, 30, 1705630. PubMed

Tseng T., Urban C., Wang Y., Otero R., Tait S. L., Alcami M., Ecija D., Trelka M., Gallego J. M., Lin N., et al., Nat. Chem. 2010, 2, 374–379. PubMed

Gross L., Schuler B., Pavliček N., Fatayer S., Majzik Z., Moll N., Peña D., Meyer G., Angew. Chem. Int. Ed. 2018, 57, 3888–3908; PubMed

Angew. Chem. 2018, 130, 3950–3972.

Krüger J., Eisenhut F., Lehmann T., Alonso J. M., Meyer J., Skidin D., Ohmann R., Ryndyk D. A., Pérez D., Guitián E., et al., J. Phys. Chem. C 2017, 121, 20353–20358.

Kawai S., Krejčí O., Foster A. S., Pawlak R., Xu F., Peng L., Orita A., Meyer E., ACS Nano 2018, 12, 8791–8797. PubMed

Krüger J., Pavliček N., Alonso J. M., Pérez D., Guitián E., Lehmann T., Cuniberti G., Gourdon A., Meyer G., Gross L., et al., ACS Nano 2016, 10, 4538–4542. PubMed

Krüger J., Eisenhut F., Alonso J. M., Lehmann T., Guitián E., Pérez D., Skidin D., Gamaleja F., Ryndyk D. A., Joachim C., et al., Chem. Commun. 2017, 53, 1583–1586. PubMed

Urgel J. I., Hayashi H., Di Giovannantonio M., Pignedoli C. A., Mishra S., Deniz O., Yamashita M., Dienel T., Ruffieux P., Yamada H., et al., J. Am. Chem. Soc. 2017, 139, 11658–11661. PubMed

Zuzak R., Dorel R., Kolmer M., Szymonski M., Godlewski S., Echavarren A. M., Angew. Chem. Int. Ed. 2018, 57, 10500–10505; PubMed PMC

Angew. Chem. 2018, 130, 10660–10665.

Zuzak R., Dorel R., Krawiec M., Such B., Kolmer M., Szymonski M., Echavarren A. M., Godlewski S., ACS Nano 2017, 11, 9321–9329. PubMed

Krüger J., García F., Eisenhut F., Skidin D., Alonso J. M., Guitián E., Pérez D., Cuniberti G., Moresco F., Peña D., Angew. Chem. Int. Ed. 2017, 56, 11945–11948; PubMed

Angew. Chem. 2017, 129, 12107–12110.

Moreno C., Vilas-Varela M., Kretz B., Garcia-Lekue A., Costache M. V., Paradinas M., Panighel M., Ceballos G., Valenzuela S. O., Peña D., et al., Science 2018, 360, 199. PubMed

Sun Q., Tran B. V., Cai L., Ma H., Yu X., Yuan C., Stöhr M., Xu W., Angew. Chem. Int. Ed. 2017, 56, 12165–12169; PubMed

Angew. Chem. 2017, 129, 12333–12337.

Sun Q., Yu X., Bao M., Liu M., Pan J., Zha Z., Cai L., Ma H., Yuan C., Qiu X., et al., Angew. Chem. Int. Ed. 2018, 57, 4035–4038; PubMed

Angew. Chem. 2018, 130, 4099–4102.

Björk J., Hanke F., Stafström S., J. Am. Chem. Soc. 2013, 135, 5768–5775. PubMed

Dong L., Liu P. N., Lin N., Acc. Chem. Res. 2015, 48, 2765–2774. PubMed

Krüger J., Eisenhut F., Skidin D., Lehmann T., Ryndyk D. A., Cuniberti G., García F., Alonso J. M., Guitián E., Pérez D., et al., ACS Nano 2018, 12, 8506–8511. PubMed

Piquero-Zulaica I., Garcia-Lekue A., Colazzo L., Krug C. K., Mohammed M. S. G., Abd El-Fattah Z. M., Gottfried J. M., de Oteyza D. G., Ortega J. E., Lobo-Checa J., ACS Nano 2018, 12, 10537–10544. PubMed

Merino-Díez N., Garcia-Lekue A., Carbonell-Sanromà E., Li J., Corso M., Colazzo L., Sedona F., Sánchez-Portal D., Pascual J. I., de Oteyza D. G., ACS Nano 2017, 11, 11661–11668. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...