Tailoring π-conjugation and vibrational modes to steer on-surface synthesis of pentalene-bridged ladder polymers
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
Y2018/NMT-4783
Comunidad de Madrid
PubMed
32917869
PubMed Central
PMC7486926
DOI
10.1038/s41467-020-18371-2
PII: 10.1038/s41467-020-18371-2
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The development of synthetic strategies to engineer π-conjugated polymers is of paramount importance in modern chemistry and materials science. Here we introduce a synthetic protocol based on the search for specific vibrational modes through an appropriate tailoring of the π-conjugation of the precursors, in order to increase the attempt frequency of a chemical reaction. First, we design a 1D π-conjugated polymer on Au(111), which is based on bisanthene monomers linked by cumulene bridges that tune specific vibrational modes. In a second step, upon further annealing, such vibrational modes steer the twofold cyclization reaction between adjacent bisanthene moieties, which gives rise to a long pentalene-bridged conjugated ladder polymer featuring a low bandgap. In addition, high resolution atomic force microscopy allows us to identify by atomistic insights the resonance form of the polymer, thus confirming the validity of the Glidewell and Lloyd´s rules for aromaticity. This on-surface synthetic strategy may stimulate exploiting previously precluded reactions towards π-conjugated polymers with specific structures and properties.
IMDEA Nanociencia C Faraday 9 Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
Institute of Physics The Czech Academy of Sciences Cukrovarnická 10 162 00 Prague 6 Czech Republic
See more in PubMed
Heeger AJ. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture) Angew. Chem. Int. Ed. 2001;40:2591–2611. PubMed
Guo X, Baumgarten M, Müllen K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 2013;38:1832–1908.
Facchetti A. Π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 2011;23:733–758.
Lee J, Kalin AJ, Yuan T, Al-Hashimi M, Fang L. Fully conjugated ladder polymers. Chem. Sci. 2017;8:2503–2521. PubMed PMC
Tobe Y. Quinodimethanes incorporated in non-benzenoid aromatic or antiaromatic frameworks. Top. Curr. Chem. 2018;376:12. PubMed
Parkhurst, R. R. & Swager, T. M. in Polyarenes II (eds Jay S. Siegel & Yao-Ting Wu) 141–175 (Springer International Publishing, 2014).
Zeng Z, et al. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 2015;44:6578–6596. PubMed
Frederickson CK, Rose BD, Haley MM. Explorations of the indenofluorenes and expanded quinoidal analogues. Acc. Chem. Res. 2017;50:977–987. PubMed
Mishra S, et al. Tailoring bond topologies in open-shell graphene nanostructures. ACS Nano. 2018;12:11917–11927. PubMed
Liu J, et al. Open-shell nonbenzenoid nanographenes containing two pairs of pentagonal and heptagonal rings. J. Am. Chem. Soc. 2019;141:12011–12020. PubMed
Di Giovannantonio M, et al. On-surface synthesis of antiaromatic and open-shell indeno[2,1-b]fluorene polymers and their lateral fusion into porous ribbons. J. Am. Chem. Soc. 2019;141:12346–12354. PubMed
Mishra S, et al. Topological defect-induced magnetism in a nanographene. J. Am. Chem. Soc. 2020;142:1147–1152. PubMed
Fujii S, et al. Highly-conducting molecular circuits based on antiaromaticity. Nat. Commun. 2017;8:15984–15984. PubMed PMC
Fan Q, Gottfried JM, Zhu J. Surface-catalyzed C–C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc. Chem. Res. 2015;48:2484–2494. PubMed
Talirz L, Ruffieux P, Fasel R. On-surface synthesis of atomically precise graphene nanoribbons. Adv. Mater. 2016;28:6222–6231. PubMed
Shen Q, Gao H-Y, Fuchs H. Frontiers of on-surface synthesis: from principles to applications. Nano Today. 2017;13:77–96.
Sun Q, Zhang R, Qiu J, Liu R, Xu W. On-surface synthesis of carbon nanostructures. Adv. Mater. 2018;30:1705630. PubMed
Clair S, de Oteyza DG. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 2019;119:4717–4776. PubMed PMC
Cai J, et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2014;9:896–900. PubMed
Steiner C, et al. Hierarchical on-surface synthesis and electronic structure of carbonyl-functionalized one- and two-dimensional covalent nanoarchitectures. Nat. Commun. 2017;8:14765. PubMed PMC
Moreno C, et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science. 2018;360:199. PubMed
Sánchez-Sánchez C, et al. On-surface synthesis and characterization of acene-based nanoribbons incorporating four-membered rings. Chem. Eur. J. 2019;25:12074–12082. PubMed
Sánchez-Grande A, et al. On-surface synthesis of ethynylene bridged anthracene polymers. Angew. Chem. Int. Ed. 2019;58:6559–6563. PubMed PMC
Li J, et al. Band depopulation of graphene nanoribbons induced by chemical gating with amino groups. ACS Nano. 2020;14:1895–1901. PubMed
Urgel JI, et al. On-surface synthesis of cumulene-containing polymers via two-step dehalogenative homocoupling of dibromomethylene-functionalized tribenzoazulene. Angew. Chem. Int. Ed. 2020;59:13281–13287. PubMed PMC
Galeotti, G. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 19, 874–880 (2020). PubMed
Cirera B, et al. Tailoring topological order and pi-conjugation to engineer quasi-metallic polymers. Nat. Nanotechnol. 2020;15:421–423. PubMed
Lewis JP, et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B. 2011;248:1989–2007.
Mendieta-Moreno JI, et al. FIREBALL/AMBER: an efficient local-orbital DFT QM/MM method for biomolecular systems. J. Chem. Theory Comput. 2014;10:2185–2193. PubMed
Vineyard GH. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids. 1957;3:121–127.
Crim FF. Chemical dynamics of vibrationally excited molecules: controlling reactions in gases and on surfaces. Proc. Nat. Acad. Sci. USA. 2008;105:12654. PubMed PMC
Guo H, Liu K. Control of chemical reactivity by transition-state and beyond. Chem. Sci. 2016;7:3992–4003. PubMed PMC
Polanyi JC. Concepts in reaction dynamics. Acc. Chem. Res. 1972;5:161–168.
Truhlar DG, Garrett BC, Klippenstein SJ. Current status of transition-state theory. J. Phys. Chem. 1996;100:12771–12800.
Bao JL, Truhlar DG. Variational transition state theory: theoretical framework and recent developments. Chem. Soc. Rev. 2017;46:7548–7596. PubMed
Glidewell C, Lloyd D. MNDO study of bond orders in some conjugated bi- and tri- cyclic hydrocarbons. Tetrahedron. 1984;40:4455–4472.
El Bakouri O, Poater J, Feixas F, Solà M. Exploring the validity of the Glidewell–Lloyd extension of Clar’s π-sextet rule: assessment from polycyclic conjugated hydrocarbons. Theor. Chem. Acc. 2016;135:205.
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science. 2009;325:1110. PubMed
Jelínek P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys: Condens. Matter. 2017;29:343002. PubMed
Gross L, et al. Bond-order discrimination by atomic force microscopy. Science. 2012;337:1326–1329. PubMed
Neaton JB, Hybertsen MS, Louie SG. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 2006;97:216405. PubMed
Amy F, Chan C, Kahn A. Polarization at the gold/pentacene interface. Org. Electron. 2005;6:85–91.
Cohen AJ, Mori-Sánchez P, Yang W. Insights into current limitations of density functional theory. Science. 2008;321:792. PubMed
Steckler TT, et al. Very low band gap thiadiazoloquinoxaline donor–acceptor polymers as multi-tool conjugated polymers. J. Am. Chem. Soc. 2014;136:1190–1193. PubMed
Dou L, Liu Y, Hong Z, Li G, Yang Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 2015;115:12633–12665. PubMed
Kawabata K, Saito M, Osaka I, Takimiya K. Very small bandgap π-conjugated polymers with extended thienoquinoids. J. Am. Chem. Soc. 2016;138:7725–7732. PubMed
Horcas I, et al. WSxM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007;78:013705. PubMed
Blum V, et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009;180:2175–2196.
Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1998;98:5648.
Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B. 2014;90:085421. PubMed
Krejčí O, Hapala P, Ondráček M, Jelínek P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B. 2017;95:045407.
Case, D. A. et al. AMBER 2018. University of California, San Francisco (2018).
Heinz H, Lin T-J, Kishore Mishra R, Emami FS. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE Force Field. Langmuir. 2013;29:1754–1765. PubMed
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. PubMed
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. PubMed
Basanta, M. A., Dappe, Y. J., Jelínek, P. & Ortega, J. Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics. Comput. Mater. Sci. 39 759–766 (2007).
Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021.
Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974;27:789–807.
Chai J-D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:6615–6620. PubMed
Dunning TH. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023.
Gaussian 09, R. D. et al. Gaussian, Inc. (Wallingford, CT, 2013).