Exploiting Cooperative Catalysis for the On-Surface Synthesis of Linear Heteroaromatic Polymers via Selective C-H Activation
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RE2669/7
Deutsche Forschungsgemeinschaft
PA3628/1
Deutsche Forschungsgemeinschaft
GACR 20-13692X
Akademie Věd České Republiky
PP00P2_157615, PP00P2_187185
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
200021_204053
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
LM2018110
CzechNanoLab Research Infrastructure
LM2015085
Grantová Agentura České Republiky
PubMed
34788494
PubMed Central
PMC9299585
DOI
10.1002/anie.202112798
Knihovny.cz E-zdroje
- Klíčová slova
- Atomic force microscopy, Cooperative effects, On-surface synthesis, Scanning tunneling microscopy, Surface chemistry,
- Publikační typ
- časopisecké články MeSH
Regiospecific C-H activation is a promising approach to achieve extended polymers with tailored structures. While a recent on-surface synthetic approach has enabled regioselective homocoupling of heteroaromatic molecules, only small oligomers have been achieved. Herein, selective C-H activation for dehydrogenative C-C couplings of hexaazatriphenylene by Scholl reaction is reported for the first time. By combining low-temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM), we revealed the formation of one-dimensional polymers with a double-chain structure. The details of the growth process are rationalized by density functional theory (DFT) calculations, pointing out a cooperative catalytic action of Na and Ag adatoms in steering the C-H selectivity for the polymerization.
Department of Chemistry Zhejiang Sci Tech University Hangzhou China
Institute of Experimental and Applied Physics University of Regensburg 93053 Regensburg Germany
Institute of Physics of Czech Academy of Sciences 16200 Prague Czech Republic
Zobrazit více v PubMed
Grzybowski M., Skonieczny K., Butenschoen H., Gryko D. T., Angew. Chem. Int. Ed. 2013, 52, 9900–9930; PubMed
Angew. Chem. 2013, 125, 10084–10115.
Sarhan A. A., Bolm C., Chem. Soc. Rev. 2009, 38, 2730–2744. PubMed
Myśliwiec D., Donnio B., Chmielewski P. J., Heinrich B., Stępień M., J. Am. Chem. Soc. 2012, 134, 4822–4833. PubMed
Cao Y., Wang X.-Y., Wang J.-Y., Pei J., Synlett 2014, 25, 313–323.
Narita A., Wang X.-Y., Feng X., Müllen K., Chem. Soc. Rev. 2015, 44, 6616–6643. PubMed
Little M. S., Yeates S. G., Alwattar A. A., Heard K. W., Raftery J., Edwards A. C., Parry A. V., Quayle P., Eur. J. Org. Chem. 2017, 1694–1703.
Han Y., Xue Z., Li G., Gu Y., Ni Y., Dong S., Chi C., Angew. Chem. Int. Ed. 2020, 59, 9026–9031; PubMed
Angew. Chem. 2020, 132, 9111–9116.
Uryu M., Hiraga T., Koga Y., Saito Y., Murakami K., Itami K., Angew. Chem. Int. Ed. 2020, 59, 6551–6554; PubMed
Angew. Chem. 2020, 132, 6613–6616.
Ito H., Segawa Y., Murakami K., Itami K., J. Am. Chem. Soc. 2019, 141, 3–10. PubMed
King B. T., Kroulík J., Robertson C. R., Rempala P., Hilton C. L., Korinek J. D., Gortari L. M., J. Org. Chem. 2007, 72, 2279–2288. PubMed
Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., Seitsonen A. P., Saleh M., Feng X., Müllen K., Fasel R., Nature 2010, 466, 470–473. PubMed
Grill L., Hecht S., Nat. Chem. 2020, 12, 115–130. PubMed
Ruffieux P., Wang S., Yang B., Sánchez-Sánchez C., Liu J., Dienel T., Talirz L., Shinde P., Pignedoli C. A., Passerone D., Dumslaff T., Feng X., Müllen K., Fasel R., Nature 2016, 531, 489–492. PubMed
Liu J., Berger R., Müllen K., Feng X., From Polyphenylenes to Nanographenes and Graphene Nanoribbons, Springer, Heidelberg, 2017, pp. 1–32.
Fan Q., Gottfried J. M., Zhu J., Acc. Chem. Res. 2015, 48, 2484–2494. PubMed
Clair S., de Oteyza D. G., Chem. Rev. 2019, 119, 4717–4776. PubMed PMC
Fan Q., Werner S., Tschakert J., Ebeling D., Schirmeisen A., Hilt G., Hieringer W., Gottfried J. M., J. Am. Chem. Soc. 2018, 140, 7526–7532. PubMed
Sun Q., Zhang C., Kong H., Tan Q., Xu W., Chem. Commun. 2014, 50, 11825–11828. PubMed
Wang C.-X., Jin Q., Shu C.-H., Hua X., Long Y.-T., Liu P.-N., Chem. Commun. 2017, 53, 6347–6350. PubMed
Kocić N., Liu X., Chen S., Decurtins S., Krejčí O., Jelínek P., Repp J., Liu S. X., J. Am. Chem. Soc. 2016, 138, 5585–5593. PubMed
Sonogashira K., Tohda Y., Hagihara N., Tetrahedron Lett. 1975, 16, 4467–4470.
Bi Q., Huang X., Yin G., Chen T., Du X., Cai J., Xu J., Liu Z., Han Y., Huang F., ChemCatChem 2019, 11, 1295–1302.
Sammis G. M., Danjo H., Jacobsen E. N., J. Am. Chem. Soc. 2004, 126, 9928–9929. PubMed
Patera L. L., Liu X., Mosso N., Decurtins S., Liu S.-X., Repp J., Angew. Chem. Int. Ed. 2017, 56, 10786–10790; PubMed
Angew. Chem. 2017, 129, 10926–10930.
Freund S., Pawlak R., Moser L., Hinaut A., Steiner R., Marinakis N., Constable E. C., Meyer E., Housecroft C. E., Glatzel T., ACS Omega 2018, 3, 12851–12856. PubMed PMC
Meier T., Pawlak R., Kawai S., Geng Y., Liu X., Decurtins S., Hapala P., Baratoff A., Liu S.-X., Jelínek P., Meyer E., Glatzel T., ACS Nano 2017, 11, 8413–8420. PubMed
Bowker M., Waugh K., Surf. Sci. 1983, 134, 639–664.
Wäckerlin C., Iacovita C., Chylarecka D., Fesser P., Jung T. A., Ballav N., Chem. Commun. 2011, 47, 9146. PubMed
Shimizu T. K., Jung J., Imada H., Kim Y., Angew. Chem. Int. Ed. 2014, 53, 13729–13733; PubMed
Angew. Chem. 2014, 126, 13949–13953.
Zhou K., Liang H., Wang M., Xing S., Ding H., Song Y., Wang Y., Xu Q., He J.-H., Zhu J., Zhao W., Ma Y., Shi Z., Nanoscale Adv. 2020, 2, 2170–2176. PubMed PMC
Hieulle J., Peyrot D., Jiang Z., Silly F., Chem. Commun. 2015, 51, 13162–13165. PubMed
Zhang C., Wang L., Xie L., Kong H., Tan Q., Cai L., Sun Q., Xu W., ChemPhysChem 2015, 16, 2099–2105. PubMed
Zhang C., Xie L., Wang L., Kong H., Tan Q., Xu W., J. Am. Chem. Soc. 2015, 137, 11795–11800. PubMed
Skomski D., Abb S., Tait S. L., J. Am. Chem. Soc. 2012, 134, 14165–14171. PubMed
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., Science 2009, 325, 1110–1114. PubMed
Queck F., Krejčí O., Scheuerer P., Bolland F., Otyepka M., Jelínek P., Repp J., J. Am. Chem. Soc. 2018, 140, 12884–12889. PubMed
Patera L. L., Zou Z., Dri C., Africh C., Repp J., Comelli G., Phys. Chem. Chem. Phys. 2017, 19, 24605–24612. PubMed
Yang Z., Gebhardt J., Schaub T. A., Sander T., Schönamsgruber J., Soni H., Görling A., Kivala M., Maier S., Nanoscale 2018, 10, 3769–3776. PubMed
Hapala P., Kichin G., Wagner C., Tautz F. S., Temirov R., Jelínek P., Phys. Rev. B 2014, 90, 085421. PubMed
Kong H., Zhang C., Sun Q., Yu X., Xie L., Wang L., Li L., Hu S., Ju H., He Y., Zhu J., Xu W., ACS Nano 2018, 12, 9033–9039. PubMed
Fritton M., Duncan D. A., Deimel P. S., Rastgoo-Lahrood A., Allegretti F., Barth J. V., Heckl W. M., Björk J., Lackinger M., J. Am. Chem. Soc. 2019, 141, 4824–4832. PubMed
Patera L. L., Bianchini F., Africh C., Dri C., Soldano G., Mariscal M. M., Peressi M., Comelli G., Science 2018, 359, 1243–1246. PubMed
de la Torre B., Matěj A., Sánchez-Grande A., Cirera B., Mallada B., Rodríguez-Sánchez E., Santos J., Mendieta-Moreno J. I., Edalatmanesh S., Lauwaet K., Otyepka M., Medveď M., Buendía Á., Miranda R., Martín N., Jelínek P., Écija D., Nat. Commun. 2020, 11, 4567. PubMed PMC
Mendieta-Moreno J. I., Walker R. C., Lewis J. P., Gómez-Puertas P., Mendieta J., Ortega J., J. Chem. Theory Comput. 2014, 10, 2185–2193. PubMed
Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., Kollman P. A., J. Comput. Chem. 1992, 13, 1011–1021.