Chromatin Immunoprecipitation Reveals p53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines

. 2025 Apr 16 ; 5 (2) : 283-298. [epub] 20250212

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40255281

Clarifying functions of the p53 protein is a crucial aspect of cancer research. We analyzed the binding sites of p53 wild-type (WT) protein and its oncologically significant mutants and evaluated their transactivation properties using a functional yeast assay. Unlike the binding sites as determined in myeloid leukemia cell lines by chromatin immunoprecipitation of p53-R175H, p53-Y220C, p53-M237I, p53-R248Q, and p53-R273H mutants, the target sites of p53-WT and p53-R282W were significantly associated with putative G-quadruplex sequences (PQSs). Guanine-quadruplex (G-quadruplex or G4) formation in these sequences was evaluated by using a set of biophysical methods. G4s can modulate gene expression induced by p53. At low p53 expression level, PQS upstream of the p53-response element (RE) leads to greater gene expression induced by p53-R282W compared to that for the RE without PQS. Meanwhile, p53-WT protein expression is decreased by the PQS presence. At a high p53 expression level, the presence of PQS leads to a decreased expression of the reporter regardless of the distance and localization of the G4 from the RE.

Zobrazit více v PubMed

Chène P. The role of tetramerization in p53 function. Oncogene 2001, 20, 2611–2617. 10.1038/sj.onc.1204373. PubMed DOI

Huang Y.; Jiao Z.; Fu Y.; Hou Y.; Sun J.; Hu F.; Yu S.; Gong K.; Liu Y.; Zhao G. An overview of the functions of p53 and drugs acting either on wild- or mutant-type p53. Eur. J. Med. Chem. 2024, 265, 11612110.1016/j.ejmech.2024.116121. PubMed DOI

McBride O. W.; Merry D.; Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 130–134. 10.1073/pnas.83.1.130. PubMed DOI PMC

Chen X.; Zhang T.; Su W.; Dou Z.; Zhao D.; Jin X.; Lei H.; Wang J.; Xie X.; Cheng B.; et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 2022, 13, 1–14. 10.1038/s41419-022-05408-1. PubMed DOI PMC

Mao Y.; Jiang P. The crisscross between p53 and metabolism in cancer. Acta Biochim. Biophys. Sin. 2023, 55, 914–922. 10.3724/abbs.2023109. PubMed DOI PMC

Zhang C.; Liu J.; Xu D.; Zhang T.; Hu W.; Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J. Mol. Cell Biol. 2020, 12, 674–687. 10.1093/jmcb/mjaa040. PubMed DOI PMC

Klimovich B.; Merle N.; Neumann M.; Elmshäuser S.; Nist A.; Mernberger M.; Kazdal D.; Stenzinger A.; Timofeev O.; Stiewe T. p53 partial loss-of-function mutations sensitize to chemotherapy. Oncogene 2022, 41, 1011–1023. 10.1038/s41388-021-02141-5. PubMed DOI PMC

Xu J.; Qian J.; Hu Y.; Wang J.; Zhou X.; Chen H.; Fang J.-Y. Heterogeneity of Li-Fraumeni syndrome links to unequal gain-of-function effects of p53 mutations. Sci. Rep. 2014, 4, 4223.10.1038/srep04223. PubMed DOI PMC

Zhang Y.; Coillie S. V.; Fang J.-Y.; Xu J. Gain of function of mutant p53: R282W on the peak?. Oncogenesis 2016, 5, e19610.1038/oncsis.2016.8. PubMed DOI PMC

Petitjean A.; Mathe E.; Kato S.; Ishioka C.; Tavtigian S. V.; Hainaut P.; Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 2007, 28, 622–629. 10.1002/humu.20495. PubMed DOI

Cho Y.; Gorina S.; Jeffrey P. D.; Pavletich N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994, 265, 346–355. 10.1126/science.8023157. PubMed DOI

Joerger A. C.; Ang H. C.; Fersht A. R. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15056–15061. 10.1073/pnas.0607286103. PubMed DOI PMC

Peuget S.; Zhou X.; Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat. Rev. Cancer 2024, 24, 192–215. 10.1038/s41568-023-00658-3. PubMed DOI

Lin W.; Yan Y.; Huang Q.; Zheng D. MDMX in Cancer: A Partner of p53 and a p53-Independent Effector. Biol. Targets Ther. 2024, 18, 61–78. 10.2147/BTT.S436629. PubMed DOI PMC

Su A.; Tabata Y.; Aoki K.; Sada A.; Ohki R.; Nagatoishi S.; Tsumoto K.; Wang S.; Otani Y.; Ohwada T. Elaboration of Non-naturally Occurring Helical Tripeptides as p53-MDM2/MDMX Interaction Inhibitors. Chem. Pharm. Bull. (Tokyo) 2021, 69, 681–692. 10.1248/cpb.c21-00238. PubMed DOI

Wang W.; Albadari N.; Du Y.; Fowler J. F.; Sang H. T.; Xian W.; McKeon F.; Li W.; Zhou J.; Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol. Rev. 2024, 76, 414–453. 10.1124/pharmrev.123.001026. PubMed DOI PMC

el-Deiry W. S.; Kern S. E.; Pietenpol J. A.; Kinzler K. W.; Vogelstein B. Definition of a consensus binding site for p53. Nat. Genet. 1992, 1, 45–49. 10.1038/ng0492-45. PubMed DOI

Brázda V.; Coufal J. Recognition of Local DNA Structures by p53 Protein. Int. J. Mol. Sci. 2017, 18, 375.10.3390/ijms18020375. PubMed DOI PMC

Göhler T.; Reimann M.; Cherny D.; Walter K.; Warnecke G.; Kim E.; Deppert W. Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J. Biol. Chem. 2002, 277, 41192–41203. 10.1074/jbc.M202344200. PubMed DOI

McKinney K.; Mattia M.; Gottifredi V.; Prives C. p53 linear diffusion along DNA requires its C terminus. Mol. Cell 2004, 16, 413–424. 10.1016/j.molcel.2004.09.032. PubMed DOI

McKinney K.; Prives C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell. Biol. 2002, 22, 6797–6808. 10.1128/MCB.22.19.6797-6808.2002. PubMed DOI PMC

Brázda V.; Fojta M. The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int. J. Mol. Sci. 2019, 20, 5605.10.3390/ijms20225605. PubMed DOI PMC

Degtyareva N.; Subramanian D.; Griffith J. D. Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J. Biol. Chem. 2001, 276, 8778–8784. 10.1074/jbc.M006795200. PubMed DOI

Kim E.; Deppert W. The complex interactions of p53 with target DNA: we learn as we go. Biochem. Cell Biol. Biochim. Biol. Cell. 2003, 81, 141–150. 10.1139/o03-046. PubMed DOI

Štros M.; Muselíková-Polanská E.; Pospíšilová Š.; Strauss F. High-Affinity Binding of Tumor-Suppressor Protein p53 and HMGB1 to Hemicatenated DNA Loops. Biochemistry 2004, 43, 7215–7225. 10.1021/bi049928k. PubMed DOI

Subramanian D.; Griffith J. D. p53 Monitors replication fork regression by binding to ‘chickenfoot’ intermediates. J. Biol. Chem. 2005, 280, 42568–42572. 10.1074/jbc.M506348200. PubMed DOI

Stansel R. M.; Subramanian D.; Griffith J. D. p53 binds telomeric single strand overhangs and t-loop junctions in vitro. J. Biol. Chem. 2002, 277, 11625–11628. 10.1074/jbc.C100764200. PubMed DOI

Palecek E.; Brázda V.; Jagelská E.; Pecinka P.; Karlovská L.; Brázdová M. Enhancement of p53 sequence-specific binding by DNA supercoiling. Oncogene 2004, 23, 2119–2127. 10.1038/sj.onc.1207324. PubMed DOI

Brázda V.; Paleĉek J.; Pospísilová S.; Vojtêsek B.; Paleĉek E. Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem. Biophys. Res. Commun. 2000, 267, 934–939. 10.1006/bbrc.1999.2056. PubMed DOI

Palecek E.; Brázdová M.; Brázda V.; Palecek J.; Billová S.; Subramaniam V.; Jovin T. M. Binding of p53 and its core domain to supercoiled DNA. Eur. J. Biochem. 2001, 268, 573–581. 10.1046/j.1432-1327.2001.01898.x. PubMed DOI

Brázdová M.; Tichý V.; Helma R.; Bažantová P.; Polášková A.; Krejčí A.; Petr M.; Navrátilová L.; Tichá O.; Nejedlý K.; et al. p53 Specifically Binds Triplex DNA In Vitro and in Cells. PloS One 2016, 11, e016743910.1371/journal.pone.0167439. PubMed DOI PMC

Quante T.; Otto B.; Brázdová M.; Kejnovská I.; Deppert W.; Tolstonog G. V. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle Georget. Tex 2012, 11, 3290–3303. 10.4161/cc.21646. PubMed DOI PMC

Dell’Oca M. C.; Quadri R.; Bernini G. M.; Menin L.; Grasso L.; Rondelli D.; Yazici O.; Sertic S.; Marini F.; Pellicioli A.; et al. Spotlight on G-Quadruplexes: From Structure and Modulation to Physiological and Pathological Roles. Int. J. Mol. Sci. 2024, 25, 3162.10.3390/ijms25063162. PubMed DOI PMC

Lopina O. D.; Sidorenko S. V.; Fedorov D. A.; Klimanova E. A. G-Quadruplexes as Sensors of Intracellular Na+/K+ Ratio: Potential Role in Regulation of Transcription and Translation. Biochem. Biokhimiia 2024, 89, S262–S277. 10.1134/S0006297924140153. PubMed DOI

Romano F.; Di Porzio A.; Iaccarino N.; Riccardi G.; Di Lorenzo R.; Laneri S.; Pagano B.; Amato J.; Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin. Ther. Pat. 2023, 33, 745–773. 10.1080/13543776.2023.2271168. PubMed DOI

Adámik M.; Kejnovská I.; Bažantová P.; Petr M.; Renčiuk D.; Vorlíčková M.; Brázdová M. p53 binds human telomeric G-quadruplex in vitro. Biochimie 2016, 128–129, 83–91. 10.1016/j.biochi.2016.07.004. PubMed DOI

Ma Y.; Guo J.; Song X.; Rao H.; Zhang J.; Miao M.; Pan F.; Guo Z. G-Quadruplex-Mediated Transcriptional Regulation of SYT7: Implications for Tumor Progression and Therapeutic Strategies. Biochemistry 2024, 63, 2609–2620. 10.1021/acs.biochem.4c00359. PubMed DOI

Antariksa N. F.; Di Antonio M. The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization. Acc. Chem. Res. 2024, 57, 3397–3406. 10.1021/acs.accounts.4c00574. PubMed DOI PMC

Liu T.; Shen X.; Ren Y.; Lu H.; Liu Y.; Chen C.; Yu L.; Xue Z. Genome-wide mapping of native co-localized G4s and R-loops in living cells. eLife 2024, 13, RP99026.10.7554/eLife.99026. PubMed DOI PMC

Paul T.; Yang L.; Lee C.-Y.; Myong S. Simultaneous probing of transcription, G-quadruplex, and R-loop. Methods Enzymol. 2024, 705, 377–396. 10.1016/bs.mie.2024.07.004. PubMed DOI PMC

Zhong L.-T.; Yuan J.-M.; Fu W.-L.; Zhang Z.-L.; Li X.; Ou T.-M.; Tan J.-H.; Huang Z.-S.; Chen S.-B. Identification of sanguinarine as c-MYC transcription inhibitor through enhancing the G-quadruplex-NM23-H2 interactions. Bioorganic Chem. 2024, 153, 10784210.1016/j.bioorg.2024.107842. PubMed DOI

Karam J. A. Q.; Fréreux C.; Mohanty B. K.; Dalton A. C.; Dincman T. A.; Palanisamy V.; Howley B. V.; Howe P. H. The RNA-binding protein PCBP1 modulates transcription by recruiting the G-quadruplex-specific helicase DHX9. J. Biol. Chem. 2024, 300, 10783010.1016/j.jbc.2024.107830. PubMed DOI PMC

Boettcher S.; Miller P. G.; Sharma R.; McConkey M.; Leventhal M.; Krivtsov A. V.; Giacomelli A. O.; Wong W.; Kim J.; Chao S.; et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 2019, 365, 599–604. 10.1126/science.aax3649. PubMed DOI PMC

Marsico G.; Chambers V. S.; Sahakyan A. B.; McCauley P.; Boutell J. M.; Antonio M. D.; Balasubramanian S. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 2019, 47, 3862–3874. 10.1093/nar/gkz179. PubMed DOI PMC

Spiegel J.; Cuesta S. M.; Adhikari S.; Hänsel-Hertsch R.; Tannahill D.; Balasubramanian S. G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol. 2021, 22, 117.10.1186/s13059-021-02324-z. PubMed DOI PMC

Brázda V.; Kolomazník J.; Lýsek J.; Bartas M.; Fojta M.; Št’astný J.; Mergny J. L.; Hancock J. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 2019, 35, 3493–3495. 10.1093/bioinformatics/btz087. PubMed DOI PMC

Tebaldi T.; Zaccara S.; Alessandrini F.; Bisio A.; Ciribilli Y.; Inga A. Whole-genome cartography of p53 response elements ranked on transactivation potential. BMC Genomics 2015, 16, 464.10.1186/s12864-015-1643-9. PubMed DOI PMC

Quinlan A. R.; Hall I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma. Oxf. Engl. 2010, 26, 841–842. 10.1093/bioinformatics/btq033. PubMed DOI PMC

Kumar S.; Mohanty S. K.; Udgaonkar J. B. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion. J. Mol. Biol. 2007, 367, 1186–1204. 10.1016/j.jmb.2007.01.039. PubMed DOI

Renaud de la Faverie A.; Guédin A.; Bedrat A.; Yatsunyk L. A.; Mergny J.-L. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 2014, 42, e6510.1093/nar/gku111. PubMed DOI PMC

Mohanty J.; Barooah N.; Dhamodharan V.; Harikrishna S.; Pradeepkumar P. I.; Bhasikuttan A. C. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 2013, 135, 367–376. 10.1021/ja309588h. PubMed DOI

Yeasmin Khusbu F.; Zhou X.; Chen H.; Ma C.; Wang K. Thioflavin T as a fluorescence probe for biosensing applications. TrAC Trends Anal. Chem. 2018, 109, 1–18. 10.1016/j.trac.2018.09.013. DOI

Storici F.; Resnick M. A. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol. 2006, 409, 329–345. 10.1016/S0076-6879(05)09019-1. PubMed DOI

Monti P.; Bosco B.; Gomes S.; Saraiva L.; Fronza G.; Inga A. Yeast As a Chassis for Developing Functional Assays to Study Human P53. J. Vis. Exp. JoVE 2019, 10.3791/59071. PubMed DOI

Abramson J.; Adler J.; Dunger J.; Evans R.; Green T.; Pritzel A.; Ronneberger O.; Willmore L.; Ballard A. J.; Bambrick J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. 10.1038/s41586-024-07487-w. PubMed DOI PMC

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Ivani I.; Dans P. D.; Noy A.; Pérez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goñi R.; Balaceanu A.; et al. Parmbsc1: a refined force field for DNA simulations. Nat. Methods 2016, 13, 55–58. 10.1038/nmeth.3658. PubMed DOI PMC

Tian C.; Kasavajhala K.; Belfon K. A. A.; Raguette L.; Huang H.; Migues A. N.; Bickel J.; Wang Y.; Pincay J.; Wu Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. 10.1021/acs.jctc.9b00591. PubMed DOI

Li P.; Song L. F.; Merz K. M. Jr Parameterization of Highly Charged Metal Ions Using the 12–6-4 LJ-Type Nonbonded Model in Explicit Water. J. Phys. Chem. B 2015, 119, 883–895. 10.1021/jp505875v. PubMed DOI PMC

Götz A. W.; Williamson M. J.; Xu D.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. 10.1021/ct200909j. PubMed DOI PMC

Salomon-Ferrer R.; Götz A. W.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. 10.1021/ct400314y. PubMed DOI

Le Grand S.; Götz A. W.; Walker R. C. SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013, 184, 374–380. 10.1016/j.cpc.2012.09.022. DOI

Klett J.; Núñez-Salgado A.; Dos Santos H. G.; Cortés-Cabrera Á.; Perona A.; Gil-Redondo R.; Abia D.; Gago F.; Morreale A. MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein–Protein Docking. J. Chem. Theory Comput. 2012, 8, 3395–3408. 10.1021/ct300497z. PubMed DOI

Tang W.; Robles A. I.; Beyer R. P.; Gray L. T.; Nguyen G. H.; Oshima J.; Maizels N.; Harris C. C.; Monnat R. J. The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Hum. Mol. Genet. 2016, 25, 2060–2069. 10.1093/hmg/ddw079. PubMed DOI PMC

Li L.; Williams P.; Ren W.; Wang M. Y.; Gao Z.; Miao W.; Huang M.; Song J.; Wang Y. YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat. Chem. Biol. 2021, 17, 161–168. 10.1038/s41589-020-00695-1. PubMed DOI PMC

De Magis A.; Götz S.; Hajikazemi M.; Fekete-Szücs E.; Caterino M.; Juranek S.; Paeschke K. Zuo1 supports G4 structure formation and directs repair toward nucleotide excision repair. Nat. Commun. 2020, 11, 3907.10.1038/s41467-020-17701-8. PubMed DOI PMC

Lee J.; Sung K.; Joo S. Y.; Jeong J.-H.; Kim S. K.; Lee H. Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. Nat. Commun. 2022, 13, 3396.10.1038/s41467-022-31156-z. PubMed DOI PMC

Zhang X.; Spiegel J.; Martínez Cuesta S.; Adhikari S.; Balasubramanian S. Chemical profiling of DNA G-quadruplex-interacting proteins in live cells. Nat. Chem. 2021, 13, 626–633. 10.1038/s41557-021-00736-9. PubMed DOI PMC

Zhang L.; Lu Y.; Ma X.; Xing Y.; Sun J.; Jia Y. The potential interplay between G-quadruplex and p53: their roles in regulation of ferroptosis in cancer. Front. Mol. Biosci. 2022, 9, 96592410.3389/fmolb.2022.965924. PubMed DOI PMC

Lift Genome Annotations. https://genome.ucsc.edu/cgi-bin/hgLiftOver (accessed 2024–12–26).

Kratochvilová L.; Vojsoviá M.; Valková N.; Šislerová L.; El Rashed Z.; Inga A.; Monti P.; Brázda V. The presence of a G-quadruplex prone sequence upstream of a minimal promoter increases transcriptional activity in the yeast Saccharomyces cerevisiae. Biosci. Rep. 2023, 43, BSR2023134810.1042/BSR20231348. PubMed DOI PMC

Porubiaková O.; Bohálová N.; Inga A.; Vadovičová N.; Coufal J.; Fojta M.; Brázda V. The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms. Int. J. Mol. Sci. 2020, 21, 127.10.3390/ijms21010127. PubMed DOI PMC

Monti P.; Brazda V.; Bohálová N.; Porubiaková O.; Menichini P.; Speciale A.; Bocciardi R.; Inga A.; Fronza G. Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay. Genes 2021, 12, 277.10.3390/genes12020277. PubMed DOI PMC

Liu J.; Zhang C.; Hu W.; Feng Z. Tumor suppressor p53 and metabolism. J. Mol. Cell Biol. 2019, 11, 284–292. 10.1093/jmcb/mjy070. PubMed DOI PMC

Blagih J.; Buck M. D.; Vousden K. H.; Lennon-Duménil A. M. p53, cancer and the immune response. J. Cell Sci. 2020, 133, jcs23745310.1242/jcs.237453. PubMed DOI

Kastenhuber E. R.; Lowe S. W. Putting p53 in Context. Cell 2017, 170, 1062–1078. 10.1016/j.cell.2017.08.028. PubMed DOI PMC

Mijit M.; Caracciolo V.; Melillo A.; Amicarelli F.; Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules 2020, 10, 420.10.3390/biom10030420. PubMed DOI PMC

Speidel D. The role of DNA damage responses in p53 biology. Arch. Toxicol. 2015, 89, 501–517. 10.1007/s00204-015-1459-z. PubMed DOI

Ozaki T.; Nakagawara A. Role of p53 in Cell Death and Human Cancers. Cancers 2011, 3, 994–1013. 10.3390/cancers3010994. PubMed DOI PMC

Hainaut P.; Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv. Cancer Res. 1999, 77, 81–137. 10.1016/S0065-230X(08)60785-X. PubMed DOI

Rivlin N.; Brosh R.; Oren M.; Rotter V. Mutations in the p53 Tumor Suppressor Gene. Genes Cancer 2011, 2, 466–474. 10.1177/1947601911408889. PubMed DOI PMC

Shen Y.; Zhang S.; Huang X.; Chen K.; Shen J.; Wang Z. Involvement of p53 Mutation and Mismatch Repair Proteins Dysregulation in NNK-Induced Malignant Transformation of Human Bronchial Epithelial Cells. BioMed Res. Int. 2014, 2014, 92027510.1155/2014/920275. PubMed DOI PMC

Hu J.; Cao J.; Topatana W.; Juengpanich S.; Li S.; Zhang B.; Shen J.; Cai L.; Cai X.; Chen M. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J. Hematol. Oncol. 2021, 14, 157.10.1186/s13045-021-01169-0. PubMed DOI PMC

Liu Y.; Wang X.; Wang G.; Yang Y.; Yuan Y.; Ouyang L. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur. J. Med. Chem. 2019, 176, 92–104. 10.1016/j.ejmech.2019.05.018. PubMed DOI

Parrales A.; Iwakuma T. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front. Oncol. 2015, 5, 288.10.3389/fonc.2015.00288. PubMed DOI PMC

Vassilev L. T.; Vu B. T.; Graves B.; Carvajal D.; Podlaski F.; Filipovic Z.; Kong N.; Kammlott U.; Lukacs C.; Klein C.; et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004, 303, 844–848. 10.1126/science.1092472. PubMed DOI

Leng R. P.; Lin Y.; Ma W.; Wu H.; Lemmers B.; Chung S.; Parant J. M.; Lozano G.; Hakem R.; Benchimol S. Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 Degradation. Cell 2003, 112, 779–791. 10.1016/S0092-8674(03)00193-4. PubMed DOI

Migliorini D.; Bogaerts S.; Defever D.; Vyas R.; Denecker G.; Radaelli E.; Zwolinska A.; Depaepe V.; Hochepied T.; Skarnes W. C.; et al. Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. J. Clin. Invest. 2011, 121, 1329–1343. 10.1172/JCI45784. PubMed DOI PMC

Kamijo T.; Zindy F.; Roussel M. F.; Quelle D. E.; Downing J. R.; Ashmun R. A.; Grosveld G.; Sherr C. J. Tumor Suppression at the Mouse INK4a Locus Mediated by the Alternative Reading Frame Product p19 ARF. Cell 1997, 91, 649–659. 10.1016/S0092-8674(00)80452-3. PubMed DOI

Nag S.; Zhang X.; Srivenugopal K. S.; Wang M.-H.; Wang W.; Zhang R. Targeting MDM2-p53 Interaction for Cancer Therapy: Are We There Yet?. Curr. Med. Chem. 2014, 21, 553–574. 10.2174/09298673113206660325. PubMed DOI PMC

Lago S.; Nadai M.; Ruggiero E.; Tassinari M.; Marušič M.; Tosoni B.; Frasson I.; Cernilogar F. M.; Pirota V.; Doria F.; et al. The MDM2 inducible promoter folds into four-tetrad antiparallel G-quadruplexes targetable to fight malignant liposarcoma. Nucleic Acids Res. 2021, 49, 847–863. 10.1093/nar/gkaa1273. PubMed DOI PMC

Yue X.; Zhao Y.; Xu Y.; Zheng M.; Feng Z.; Hu W. Mutant p53 in Cancer: Accumulation, Gain-of-Function, and Therapy. J. Mol. Biol. 2017, 429, 1595–1606. 10.1016/j.jmb.2017.03.030. PubMed DOI PMC

Freed-Pastor W. A.; Prives C. Mutant p53: one name, many proteins. Genes Dev. 2012, 26, 1268–1286. 10.1101/gad.190678.112. PubMed DOI PMC

Sanchez-Martin V.; Lopez-Pujante C.; Soriano-Rodriguez M.; Garcia-Salcedo J. A. An Updated Focus on Quadruplex Structures as Potential Therapeutic Targets in Cancer. Int. J. Mol. Sci. 2020, 21, 8900.10.3390/ijms21238900. PubMed DOI PMC

Petr M.; Helma R.; Polášková A.; Krejčí A.; Dvořáková Z.; Kejnovská I.; Navrátilová L.; Adámik M.; Vorlíčková M.; Brázdová M. Wild-type p53 binds to MYC promoter G-quadruplex. Biosci. Rep. 2016, 36, e0039710.1042/BSR20160232. PubMed DOI PMC

Chen L.; Dickerhoff J.; Sakai S.; Yang D. DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting. Acc. Chem. Res. 2022, 55, 2628–2646. 10.1021/acs.accounts.2c00337. PubMed DOI PMC

Kosiol N.; Juranek S.; Brossart P.; Heine A.; Paeschke K. G-quadruplexes: a promising target for cancer therapy. Mol. Cancer 2021, 20, 40.10.1186/s12943-021-01328-4. PubMed DOI PMC

Amparo C.; Clark J.; Bedell V.; Murata-Collins J. L.; Martella M.; Pichiorri F.; Warner E. F.; Abdelhamid M. a. S.; Waller Z. a. E.; Smith S. S. Duplex DNA from Sites of Helicase-Polymerase Uncoupling Links Non-B DNA Structure Formation to Replicative Stress. Cancer Genomics Proteomics 2020, 17, 101–115. 10.21873/cgp.20171. PubMed DOI PMC

Pavlova A. V.; Kubareva E. A.; Monakhova M. V.; Zvereva M. I.; Dolinnaya N. G. Impact of G-Quadruplexes on the Regulation of Genome Integrity, DNA Damage and Repair. Biomolecules 2021, 11, 1284.10.3390/biom11091284. PubMed DOI PMC

Fleming A. M.; Burrows C. J. Why the ROS matters: One-electron oxidants focus DNA damage and repair on G-quadruplexes for gene regulation. DNA Repair 2025, 145, 10378910.1016/j.dnarep.2024.103789. PubMed DOI PMC

Vaddavalli P. L.; Schumacher B. The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet. TIG 2022, 38, 598–612. 10.1016/j.tig.2022.02.010. PubMed DOI

Qian S. H.; Shi M.-W.; Xiong Y.-L.; Zhang Y.; Zhang Z.-H.; Song X.-M.; Deng X.-Y.; Chen Z.-X. EndoQuad: a comprehensive genome-wide experimentally validated endogenous G-quadruplex database. Nucleic Acids Res. 2024, 52, D72–D80. 10.1093/nar/gkad966. PubMed DOI PMC

Hänsel-Hertsch R.; Spiegel J.; Marsico G.; Tannahill D.; Balasubramanian S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat. Protoc. 2018, 13, 551–564. 10.1038/nprot.2017.150. PubMed DOI

Maurizio I.; Tosoni B.; Gallina I.; Ruggiero E.; Zanin I.; Richter S. N. Production of the anti-G-quadruplex antibody BG4 for efficient genome-wide analyses: From plasmid quality control to antibody validation. Methods Enzymol. 2024, 695, 193–219. 10.1016/bs.mie.2023.11.004. PubMed DOI

Brázdová M.; Quante T.; Tögel L.; Walter K.; Loscher C.; Tichý V.; Cincárová L.; Deppert W.; Tolstonog G. V. Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences. Nucleic Acids Res. 2009, 37, 1486–1500. 10.1093/nar/gkn1085. PubMed DOI PMC

Chambers V. S.; Marsico G.; Boutell J. M.; Di Antonio M.; Smith G. P.; Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015, 33, 877–881. 10.1038/nbt.3295. PubMed DOI

Monti P.; Ciribilli Y.; Foggetti G.; Menichini P.; Bisio A.; Cappato S.; Inga A.; Divizia M. T.; Lerone M.; Bocciardi R.; Fronza G.; et al. P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development. Biosci. Rep. 2019, 39, BSR2019211410.1042/BSR20192114. PubMed DOI PMC

Monti P.; Ciribilli Y.; Bisio A.; Foggetti G.; Raimondi I.; Campomenosi P.; Menichini P.; Fronza G.; Inga A. ΔN-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites. Oncotarget 2014, 5, 2116–2130. 10.18632/oncotarget.1845. PubMed DOI PMC

Vojsovič M.; Kratochvilová L.; Valková N.; Šislerová L.; El Rashed Z.; Menichini P.; Inga A.; Monti P.; Brázda V. Transactivation by partial function P53 family mutants is increased by the presence of G-quadruplexes at a promoter site. Biochimie 2024, 216, 14–23. 10.1016/j.biochi.2023.09.026. PubMed DOI

Liu Y.; Su Z.; Tavana O.; Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024, 42, 946–967. 10.1016/j.ccell.2024.04.009. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...