Chromatin Immunoprecipitation Reveals p53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40255281
PubMed Central
PMC12006861
DOI
10.1021/acsbiomedchemau.4c00124
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Clarifying functions of the p53 protein is a crucial aspect of cancer research. We analyzed the binding sites of p53 wild-type (WT) protein and its oncologically significant mutants and evaluated their transactivation properties using a functional yeast assay. Unlike the binding sites as determined in myeloid leukemia cell lines by chromatin immunoprecipitation of p53-R175H, p53-Y220C, p53-M237I, p53-R248Q, and p53-R273H mutants, the target sites of p53-WT and p53-R282W were significantly associated with putative G-quadruplex sequences (PQSs). Guanine-quadruplex (G-quadruplex or G4) formation in these sequences was evaluated by using a set of biophysical methods. G4s can modulate gene expression induced by p53. At low p53 expression level, PQS upstream of the p53-response element (RE) leads to greater gene expression induced by p53-R282W compared to that for the RE without PQS. Meanwhile, p53-WT protein expression is decreased by the PQS presence. At a high p53 expression level, the presence of PQS leads to a decreased expression of the reporter regardless of the distance and localization of the G4 from the RE.
See more in PubMed
Chène P. The role of tetramerization in p53 function. Oncogene 2001, 20, 2611–2617. 10.1038/sj.onc.1204373. PubMed DOI
Huang Y.; Jiao Z.; Fu Y.; Hou Y.; Sun J.; Hu F.; Yu S.; Gong K.; Liu Y.; Zhao G. An overview of the functions of p53 and drugs acting either on wild- or mutant-type p53. Eur. J. Med. Chem. 2024, 265, 11612110.1016/j.ejmech.2024.116121. PubMed DOI
McBride O. W.; Merry D.; Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 130–134. 10.1073/pnas.83.1.130. PubMed DOI PMC
Chen X.; Zhang T.; Su W.; Dou Z.; Zhao D.; Jin X.; Lei H.; Wang J.; Xie X.; Cheng B.; et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 2022, 13, 1–14. 10.1038/s41419-022-05408-1. PubMed DOI PMC
Mao Y.; Jiang P. The crisscross between p53 and metabolism in cancer. Acta Biochim. Biophys. Sin. 2023, 55, 914–922. 10.3724/abbs.2023109. PubMed DOI PMC
Zhang C.; Liu J.; Xu D.; Zhang T.; Hu W.; Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J. Mol. Cell Biol. 2020, 12, 674–687. 10.1093/jmcb/mjaa040. PubMed DOI PMC
Klimovich B.; Merle N.; Neumann M.; Elmshäuser S.; Nist A.; Mernberger M.; Kazdal D.; Stenzinger A.; Timofeev O.; Stiewe T. p53 partial loss-of-function mutations sensitize to chemotherapy. Oncogene 2022, 41, 1011–1023. 10.1038/s41388-021-02141-5. PubMed DOI PMC
Xu J.; Qian J.; Hu Y.; Wang J.; Zhou X.; Chen H.; Fang J.-Y. Heterogeneity of Li-Fraumeni syndrome links to unequal gain-of-function effects of p53 mutations. Sci. Rep. 2014, 4, 4223.10.1038/srep04223. PubMed DOI PMC
Zhang Y.; Coillie S. V.; Fang J.-Y.; Xu J. Gain of function of mutant p53: R282W on the peak?. Oncogenesis 2016, 5, e19610.1038/oncsis.2016.8. PubMed DOI PMC
Petitjean A.; Mathe E.; Kato S.; Ishioka C.; Tavtigian S. V.; Hainaut P.; Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 2007, 28, 622–629. 10.1002/humu.20495. PubMed DOI
Cho Y.; Gorina S.; Jeffrey P. D.; Pavletich N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994, 265, 346–355. 10.1126/science.8023157. PubMed DOI
Joerger A. C.; Ang H. C.; Fersht A. R. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15056–15061. 10.1073/pnas.0607286103. PubMed DOI PMC
Peuget S.; Zhou X.; Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat. Rev. Cancer 2024, 24, 192–215. 10.1038/s41568-023-00658-3. PubMed DOI
Lin W.; Yan Y.; Huang Q.; Zheng D. MDMX in Cancer: A Partner of p53 and a p53-Independent Effector. Biol. Targets Ther. 2024, 18, 61–78. 10.2147/BTT.S436629. PubMed DOI PMC
Su A.; Tabata Y.; Aoki K.; Sada A.; Ohki R.; Nagatoishi S.; Tsumoto K.; Wang S.; Otani Y.; Ohwada T. Elaboration of Non-naturally Occurring Helical Tripeptides as p53-MDM2/MDMX Interaction Inhibitors. Chem. Pharm. Bull. (Tokyo) 2021, 69, 681–692. 10.1248/cpb.c21-00238. PubMed DOI
Wang W.; Albadari N.; Du Y.; Fowler J. F.; Sang H. T.; Xian W.; McKeon F.; Li W.; Zhou J.; Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol. Rev. 2024, 76, 414–453. 10.1124/pharmrev.123.001026. PubMed DOI PMC
el-Deiry W. S.; Kern S. E.; Pietenpol J. A.; Kinzler K. W.; Vogelstein B. Definition of a consensus binding site for p53. Nat. Genet. 1992, 1, 45–49. 10.1038/ng0492-45. PubMed DOI
Brázda V.; Coufal J. Recognition of Local DNA Structures by p53 Protein. Int. J. Mol. Sci. 2017, 18, 375.10.3390/ijms18020375. PubMed DOI PMC
Göhler T.; Reimann M.; Cherny D.; Walter K.; Warnecke G.; Kim E.; Deppert W. Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J. Biol. Chem. 2002, 277, 41192–41203. 10.1074/jbc.M202344200. PubMed DOI
McKinney K.; Mattia M.; Gottifredi V.; Prives C. p53 linear diffusion along DNA requires its C terminus. Mol. Cell 2004, 16, 413–424. 10.1016/j.molcel.2004.09.032. PubMed DOI
McKinney K.; Prives C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell. Biol. 2002, 22, 6797–6808. 10.1128/MCB.22.19.6797-6808.2002. PubMed DOI PMC
Brázda V.; Fojta M. The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int. J. Mol. Sci. 2019, 20, 5605.10.3390/ijms20225605. PubMed DOI PMC
Degtyareva N.; Subramanian D.; Griffith J. D. Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J. Biol. Chem. 2001, 276, 8778–8784. 10.1074/jbc.M006795200. PubMed DOI
Kim E.; Deppert W. The complex interactions of p53 with target DNA: we learn as we go. Biochem. Cell Biol. Biochim. Biol. Cell. 2003, 81, 141–150. 10.1139/o03-046. PubMed DOI
Štros M.; Muselíková-Polanská E.; Pospíšilová Š.; Strauss F. High-Affinity Binding of Tumor-Suppressor Protein p53 and HMGB1 to Hemicatenated DNA Loops. Biochemistry 2004, 43, 7215–7225. 10.1021/bi049928k. PubMed DOI
Subramanian D.; Griffith J. D. p53 Monitors replication fork regression by binding to ‘chickenfoot’ intermediates. J. Biol. Chem. 2005, 280, 42568–42572. 10.1074/jbc.M506348200. PubMed DOI
Stansel R. M.; Subramanian D.; Griffith J. D. p53 binds telomeric single strand overhangs and t-loop junctions in vitro. J. Biol. Chem. 2002, 277, 11625–11628. 10.1074/jbc.C100764200. PubMed DOI
Palecek E.; Brázda V.; Jagelská E.; Pecinka P.; Karlovská L.; Brázdová M. Enhancement of p53 sequence-specific binding by DNA supercoiling. Oncogene 2004, 23, 2119–2127. 10.1038/sj.onc.1207324. PubMed DOI
Brázda V.; Paleĉek J.; Pospísilová S.; Vojtêsek B.; Paleĉek E. Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem. Biophys. Res. Commun. 2000, 267, 934–939. 10.1006/bbrc.1999.2056. PubMed DOI
Palecek E.; Brázdová M.; Brázda V.; Palecek J.; Billová S.; Subramaniam V.; Jovin T. M. Binding of p53 and its core domain to supercoiled DNA. Eur. J. Biochem. 2001, 268, 573–581. 10.1046/j.1432-1327.2001.01898.x. PubMed DOI
Brázdová M.; Tichý V.; Helma R.; Bažantová P.; Polášková A.; Krejčí A.; Petr M.; Navrátilová L.; Tichá O.; Nejedlý K.; et al. p53 Specifically Binds Triplex DNA In Vitro and in Cells. PloS One 2016, 11, e016743910.1371/journal.pone.0167439. PubMed DOI PMC
Quante T.; Otto B.; Brázdová M.; Kejnovská I.; Deppert W.; Tolstonog G. V. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle Georget. Tex 2012, 11, 3290–3303. 10.4161/cc.21646. PubMed DOI PMC
Dell’Oca M. C.; Quadri R.; Bernini G. M.; Menin L.; Grasso L.; Rondelli D.; Yazici O.; Sertic S.; Marini F.; Pellicioli A.; et al. Spotlight on G-Quadruplexes: From Structure and Modulation to Physiological and Pathological Roles. Int. J. Mol. Sci. 2024, 25, 3162.10.3390/ijms25063162. PubMed DOI PMC
Lopina O. D.; Sidorenko S. V.; Fedorov D. A.; Klimanova E. A. G-Quadruplexes as Sensors of Intracellular Na+/K+ Ratio: Potential Role in Regulation of Transcription and Translation. Biochem. Biokhimiia 2024, 89, S262–S277. 10.1134/S0006297924140153. PubMed DOI
Romano F.; Di Porzio A.; Iaccarino N.; Riccardi G.; Di Lorenzo R.; Laneri S.; Pagano B.; Amato J.; Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin. Ther. Pat. 2023, 33, 745–773. 10.1080/13543776.2023.2271168. PubMed DOI
Adámik M.; Kejnovská I.; Bažantová P.; Petr M.; Renčiuk D.; Vorlíčková M.; Brázdová M. p53 binds human telomeric G-quadruplex in vitro. Biochimie 2016, 128–129, 83–91. 10.1016/j.biochi.2016.07.004. PubMed DOI
Ma Y.; Guo J.; Song X.; Rao H.; Zhang J.; Miao M.; Pan F.; Guo Z. G-Quadruplex-Mediated Transcriptional Regulation of SYT7: Implications for Tumor Progression and Therapeutic Strategies. Biochemistry 2024, 63, 2609–2620. 10.1021/acs.biochem.4c00359. PubMed DOI
Antariksa N. F.; Di Antonio M. The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization. Acc. Chem. Res. 2024, 57, 3397–3406. 10.1021/acs.accounts.4c00574. PubMed DOI PMC
Liu T.; Shen X.; Ren Y.; Lu H.; Liu Y.; Chen C.; Yu L.; Xue Z. Genome-wide mapping of native co-localized G4s and R-loops in living cells. eLife 2024, 13, RP99026.10.7554/eLife.99026. PubMed DOI PMC
Paul T.; Yang L.; Lee C.-Y.; Myong S. Simultaneous probing of transcription, G-quadruplex, and R-loop. Methods Enzymol. 2024, 705, 377–396. 10.1016/bs.mie.2024.07.004. PubMed DOI PMC
Zhong L.-T.; Yuan J.-M.; Fu W.-L.; Zhang Z.-L.; Li X.; Ou T.-M.; Tan J.-H.; Huang Z.-S.; Chen S.-B. Identification of sanguinarine as c-MYC transcription inhibitor through enhancing the G-quadruplex-NM23-H2 interactions. Bioorganic Chem. 2024, 153, 10784210.1016/j.bioorg.2024.107842. PubMed DOI
Karam J. A. Q.; Fréreux C.; Mohanty B. K.; Dalton A. C.; Dincman T. A.; Palanisamy V.; Howley B. V.; Howe P. H. The RNA-binding protein PCBP1 modulates transcription by recruiting the G-quadruplex-specific helicase DHX9. J. Biol. Chem. 2024, 300, 10783010.1016/j.jbc.2024.107830. PubMed DOI PMC
Boettcher S.; Miller P. G.; Sharma R.; McConkey M.; Leventhal M.; Krivtsov A. V.; Giacomelli A. O.; Wong W.; Kim J.; Chao S.; et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 2019, 365, 599–604. 10.1126/science.aax3649. PubMed DOI PMC
Marsico G.; Chambers V. S.; Sahakyan A. B.; McCauley P.; Boutell J. M.; Antonio M. D.; Balasubramanian S. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 2019, 47, 3862–3874. 10.1093/nar/gkz179. PubMed DOI PMC
Spiegel J.; Cuesta S. M.; Adhikari S.; Hänsel-Hertsch R.; Tannahill D.; Balasubramanian S. G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol. 2021, 22, 117.10.1186/s13059-021-02324-z. PubMed DOI PMC
Brázda V.; Kolomazník J.; Lýsek J.; Bartas M.; Fojta M.; Št’astný J.; Mergny J. L.; Hancock J. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 2019, 35, 3493–3495. 10.1093/bioinformatics/btz087. PubMed DOI PMC
Tebaldi T.; Zaccara S.; Alessandrini F.; Bisio A.; Ciribilli Y.; Inga A. Whole-genome cartography of p53 response elements ranked on transactivation potential. BMC Genomics 2015, 16, 464.10.1186/s12864-015-1643-9. PubMed DOI PMC
Quinlan A. R.; Hall I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma. Oxf. Engl. 2010, 26, 841–842. 10.1093/bioinformatics/btq033. PubMed DOI PMC
Kumar S.; Mohanty S. K.; Udgaonkar J. B. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion. J. Mol. Biol. 2007, 367, 1186–1204. 10.1016/j.jmb.2007.01.039. PubMed DOI
Renaud de la Faverie A.; Guédin A.; Bedrat A.; Yatsunyk L. A.; Mergny J.-L. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 2014, 42, e6510.1093/nar/gku111. PubMed DOI PMC
Mohanty J.; Barooah N.; Dhamodharan V.; Harikrishna S.; Pradeepkumar P. I.; Bhasikuttan A. C. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 2013, 135, 367–376. 10.1021/ja309588h. PubMed DOI
Yeasmin Khusbu F.; Zhou X.; Chen H.; Ma C.; Wang K. Thioflavin T as a fluorescence probe for biosensing applications. TrAC Trends Anal. Chem. 2018, 109, 1–18. 10.1016/j.trac.2018.09.013. DOI
Storici F.; Resnick M. A. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol. 2006, 409, 329–345. 10.1016/S0076-6879(05)09019-1. PubMed DOI
Monti P.; Bosco B.; Gomes S.; Saraiva L.; Fronza G.; Inga A. Yeast As a Chassis for Developing Functional Assays to Study Human P53. J. Vis. Exp. JoVE 2019, 10.3791/59071. PubMed DOI
Abramson J.; Adler J.; Dunger J.; Evans R.; Green T.; Pritzel A.; Ronneberger O.; Willmore L.; Ballard A. J.; Bambrick J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. 10.1038/s41586-024-07487-w. PubMed DOI PMC
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Ivani I.; Dans P. D.; Noy A.; Pérez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goñi R.; Balaceanu A.; et al. Parmbsc1: a refined force field for DNA simulations. Nat. Methods 2016, 13, 55–58. 10.1038/nmeth.3658. PubMed DOI PMC
Tian C.; Kasavajhala K.; Belfon K. A. A.; Raguette L.; Huang H.; Migues A. N.; Bickel J.; Wang Y.; Pincay J.; Wu Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. 10.1021/acs.jctc.9b00591. PubMed DOI
Li P.; Song L. F.; Merz K. M. Jr Parameterization of Highly Charged Metal Ions Using the 12–6-4 LJ-Type Nonbonded Model in Explicit Water. J. Phys. Chem. B 2015, 119, 883–895. 10.1021/jp505875v. PubMed DOI PMC
Götz A. W.; Williamson M. J.; Xu D.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. 10.1021/ct200909j. PubMed DOI PMC
Salomon-Ferrer R.; Götz A. W.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. 10.1021/ct400314y. PubMed DOI
Le Grand S.; Götz A. W.; Walker R. C. SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013, 184, 374–380. 10.1016/j.cpc.2012.09.022. DOI
Klett J.; Núñez-Salgado A.; Dos Santos H. G.; Cortés-Cabrera Á.; Perona A.; Gil-Redondo R.; Abia D.; Gago F.; Morreale A. MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein–Protein Docking. J. Chem. Theory Comput. 2012, 8, 3395–3408. 10.1021/ct300497z. PubMed DOI
Tang W.; Robles A. I.; Beyer R. P.; Gray L. T.; Nguyen G. H.; Oshima J.; Maizels N.; Harris C. C.; Monnat R. J. The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Hum. Mol. Genet. 2016, 25, 2060–2069. 10.1093/hmg/ddw079. PubMed DOI PMC
Li L.; Williams P.; Ren W.; Wang M. Y.; Gao Z.; Miao W.; Huang M.; Song J.; Wang Y. YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat. Chem. Biol. 2021, 17, 161–168. 10.1038/s41589-020-00695-1. PubMed DOI PMC
De Magis A.; Götz S.; Hajikazemi M.; Fekete-Szücs E.; Caterino M.; Juranek S.; Paeschke K. Zuo1 supports G4 structure formation and directs repair toward nucleotide excision repair. Nat. Commun. 2020, 11, 3907.10.1038/s41467-020-17701-8. PubMed DOI PMC
Lee J.; Sung K.; Joo S. Y.; Jeong J.-H.; Kim S. K.; Lee H. Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. Nat. Commun. 2022, 13, 3396.10.1038/s41467-022-31156-z. PubMed DOI PMC
Zhang X.; Spiegel J.; Martínez Cuesta S.; Adhikari S.; Balasubramanian S. Chemical profiling of DNA G-quadruplex-interacting proteins in live cells. Nat. Chem. 2021, 13, 626–633. 10.1038/s41557-021-00736-9. PubMed DOI PMC
Zhang L.; Lu Y.; Ma X.; Xing Y.; Sun J.; Jia Y. The potential interplay between G-quadruplex and p53: their roles in regulation of ferroptosis in cancer. Front. Mol. Biosci. 2022, 9, 96592410.3389/fmolb.2022.965924. PubMed DOI PMC
Lift Genome Annotations. https://genome.ucsc.edu/cgi-bin/hgLiftOver (accessed 2024–12–26).
Kratochvilová L.; Vojsoviá M.; Valková N.; Šislerová L.; El Rashed Z.; Inga A.; Monti P.; Brázda V. The presence of a G-quadruplex prone sequence upstream of a minimal promoter increases transcriptional activity in the yeast Saccharomyces cerevisiae. Biosci. Rep. 2023, 43, BSR2023134810.1042/BSR20231348. PubMed DOI PMC
Porubiaková O.; Bohálová N.; Inga A.; Vadovičová N.; Coufal J.; Fojta M.; Brázda V. The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms. Int. J. Mol. Sci. 2020, 21, 127.10.3390/ijms21010127. PubMed DOI PMC
Monti P.; Brazda V.; Bohálová N.; Porubiaková O.; Menichini P.; Speciale A.; Bocciardi R.; Inga A.; Fronza G. Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay. Genes 2021, 12, 277.10.3390/genes12020277. PubMed DOI PMC
Liu J.; Zhang C.; Hu W.; Feng Z. Tumor suppressor p53 and metabolism. J. Mol. Cell Biol. 2019, 11, 284–292. 10.1093/jmcb/mjy070. PubMed DOI PMC
Blagih J.; Buck M. D.; Vousden K. H.; Lennon-Duménil A. M. p53, cancer and the immune response. J. Cell Sci. 2020, 133, jcs23745310.1242/jcs.237453. PubMed DOI
Kastenhuber E. R.; Lowe S. W. Putting p53 in Context. Cell 2017, 170, 1062–1078. 10.1016/j.cell.2017.08.028. PubMed DOI PMC
Mijit M.; Caracciolo V.; Melillo A.; Amicarelli F.; Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules 2020, 10, 420.10.3390/biom10030420. PubMed DOI PMC
Speidel D. The role of DNA damage responses in p53 biology. Arch. Toxicol. 2015, 89, 501–517. 10.1007/s00204-015-1459-z. PubMed DOI
Ozaki T.; Nakagawara A. Role of p53 in Cell Death and Human Cancers. Cancers 2011, 3, 994–1013. 10.3390/cancers3010994. PubMed DOI PMC
Hainaut P.; Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv. Cancer Res. 1999, 77, 81–137. 10.1016/S0065-230X(08)60785-X. PubMed DOI
Rivlin N.; Brosh R.; Oren M.; Rotter V. Mutations in the p53 Tumor Suppressor Gene. Genes Cancer 2011, 2, 466–474. 10.1177/1947601911408889. PubMed DOI PMC
Shen Y.; Zhang S.; Huang X.; Chen K.; Shen J.; Wang Z. Involvement of p53 Mutation and Mismatch Repair Proteins Dysregulation in NNK-Induced Malignant Transformation of Human Bronchial Epithelial Cells. BioMed Res. Int. 2014, 2014, 92027510.1155/2014/920275. PubMed DOI PMC
Hu J.; Cao J.; Topatana W.; Juengpanich S.; Li S.; Zhang B.; Shen J.; Cai L.; Cai X.; Chen M. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J. Hematol. Oncol. 2021, 14, 157.10.1186/s13045-021-01169-0. PubMed DOI PMC
Liu Y.; Wang X.; Wang G.; Yang Y.; Yuan Y.; Ouyang L. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur. J. Med. Chem. 2019, 176, 92–104. 10.1016/j.ejmech.2019.05.018. PubMed DOI
Parrales A.; Iwakuma T. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front. Oncol. 2015, 5, 288.10.3389/fonc.2015.00288. PubMed DOI PMC
Vassilev L. T.; Vu B. T.; Graves B.; Carvajal D.; Podlaski F.; Filipovic Z.; Kong N.; Kammlott U.; Lukacs C.; Klein C.; et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004, 303, 844–848. 10.1126/science.1092472. PubMed DOI
Leng R. P.; Lin Y.; Ma W.; Wu H.; Lemmers B.; Chung S.; Parant J. M.; Lozano G.; Hakem R.; Benchimol S. Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 Degradation. Cell 2003, 112, 779–791. 10.1016/S0092-8674(03)00193-4. PubMed DOI
Migliorini D.; Bogaerts S.; Defever D.; Vyas R.; Denecker G.; Radaelli E.; Zwolinska A.; Depaepe V.; Hochepied T.; Skarnes W. C.; et al. Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. J. Clin. Invest. 2011, 121, 1329–1343. 10.1172/JCI45784. PubMed DOI PMC
Kamijo T.; Zindy F.; Roussel M. F.; Quelle D. E.; Downing J. R.; Ashmun R. A.; Grosveld G.; Sherr C. J. Tumor Suppression at the Mouse INK4a Locus Mediated by the Alternative Reading Frame Product p19 ARF. Cell 1997, 91, 649–659. 10.1016/S0092-8674(00)80452-3. PubMed DOI
Nag S.; Zhang X.; Srivenugopal K. S.; Wang M.-H.; Wang W.; Zhang R. Targeting MDM2-p53 Interaction for Cancer Therapy: Are We There Yet?. Curr. Med. Chem. 2014, 21, 553–574. 10.2174/09298673113206660325. PubMed DOI PMC
Lago S.; Nadai M.; Ruggiero E.; Tassinari M.; Marušič M.; Tosoni B.; Frasson I.; Cernilogar F. M.; Pirota V.; Doria F.; et al. The MDM2 inducible promoter folds into four-tetrad antiparallel G-quadruplexes targetable to fight malignant liposarcoma. Nucleic Acids Res. 2021, 49, 847–863. 10.1093/nar/gkaa1273. PubMed DOI PMC
Yue X.; Zhao Y.; Xu Y.; Zheng M.; Feng Z.; Hu W. Mutant p53 in Cancer: Accumulation, Gain-of-Function, and Therapy. J. Mol. Biol. 2017, 429, 1595–1606. 10.1016/j.jmb.2017.03.030. PubMed DOI PMC
Freed-Pastor W. A.; Prives C. Mutant p53: one name, many proteins. Genes Dev. 2012, 26, 1268–1286. 10.1101/gad.190678.112. PubMed DOI PMC
Sanchez-Martin V.; Lopez-Pujante C.; Soriano-Rodriguez M.; Garcia-Salcedo J. A. An Updated Focus on Quadruplex Structures as Potential Therapeutic Targets in Cancer. Int. J. Mol. Sci. 2020, 21, 8900.10.3390/ijms21238900. PubMed DOI PMC
Petr M.; Helma R.; Polášková A.; Krejčí A.; Dvořáková Z.; Kejnovská I.; Navrátilová L.; Adámik M.; Vorlíčková M.; Brázdová M. Wild-type p53 binds to MYC promoter G-quadruplex. Biosci. Rep. 2016, 36, e0039710.1042/BSR20160232. PubMed DOI PMC
Chen L.; Dickerhoff J.; Sakai S.; Yang D. DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting. Acc. Chem. Res. 2022, 55, 2628–2646. 10.1021/acs.accounts.2c00337. PubMed DOI PMC
Kosiol N.; Juranek S.; Brossart P.; Heine A.; Paeschke K. G-quadruplexes: a promising target for cancer therapy. Mol. Cancer 2021, 20, 40.10.1186/s12943-021-01328-4. PubMed DOI PMC
Amparo C.; Clark J.; Bedell V.; Murata-Collins J. L.; Martella M.; Pichiorri F.; Warner E. F.; Abdelhamid M. a. S.; Waller Z. a. E.; Smith S. S. Duplex DNA from Sites of Helicase-Polymerase Uncoupling Links Non-B DNA Structure Formation to Replicative Stress. Cancer Genomics Proteomics 2020, 17, 101–115. 10.21873/cgp.20171. PubMed DOI PMC
Pavlova A. V.; Kubareva E. A.; Monakhova M. V.; Zvereva M. I.; Dolinnaya N. G. Impact of G-Quadruplexes on the Regulation of Genome Integrity, DNA Damage and Repair. Biomolecules 2021, 11, 1284.10.3390/biom11091284. PubMed DOI PMC
Fleming A. M.; Burrows C. J. Why the ROS matters: One-electron oxidants focus DNA damage and repair on G-quadruplexes for gene regulation. DNA Repair 2025, 145, 10378910.1016/j.dnarep.2024.103789. PubMed DOI PMC
Vaddavalli P. L.; Schumacher B. The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet. TIG 2022, 38, 598–612. 10.1016/j.tig.2022.02.010. PubMed DOI
Qian S. H.; Shi M.-W.; Xiong Y.-L.; Zhang Y.; Zhang Z.-H.; Song X.-M.; Deng X.-Y.; Chen Z.-X. EndoQuad: a comprehensive genome-wide experimentally validated endogenous G-quadruplex database. Nucleic Acids Res. 2024, 52, D72–D80. 10.1093/nar/gkad966. PubMed DOI PMC
Hänsel-Hertsch R.; Spiegel J.; Marsico G.; Tannahill D.; Balasubramanian S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat. Protoc. 2018, 13, 551–564. 10.1038/nprot.2017.150. PubMed DOI
Maurizio I.; Tosoni B.; Gallina I.; Ruggiero E.; Zanin I.; Richter S. N. Production of the anti-G-quadruplex antibody BG4 for efficient genome-wide analyses: From plasmid quality control to antibody validation. Methods Enzymol. 2024, 695, 193–219. 10.1016/bs.mie.2023.11.004. PubMed DOI
Brázdová M.; Quante T.; Tögel L.; Walter K.; Loscher C.; Tichý V.; Cincárová L.; Deppert W.; Tolstonog G. V. Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences. Nucleic Acids Res. 2009, 37, 1486–1500. 10.1093/nar/gkn1085. PubMed DOI PMC
Chambers V. S.; Marsico G.; Boutell J. M.; Di Antonio M.; Smith G. P.; Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015, 33, 877–881. 10.1038/nbt.3295. PubMed DOI
Monti P.; Ciribilli Y.; Foggetti G.; Menichini P.; Bisio A.; Cappato S.; Inga A.; Divizia M. T.; Lerone M.; Bocciardi R.; Fronza G.; et al. P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development. Biosci. Rep. 2019, 39, BSR2019211410.1042/BSR20192114. PubMed DOI PMC
Monti P.; Ciribilli Y.; Bisio A.; Foggetti G.; Raimondi I.; Campomenosi P.; Menichini P.; Fronza G.; Inga A. ΔN-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites. Oncotarget 2014, 5, 2116–2130. 10.18632/oncotarget.1845. PubMed DOI PMC
Vojsovič M.; Kratochvilová L.; Valková N.; Šislerová L.; El Rashed Z.; Menichini P.; Inga A.; Monti P.; Brázda V. Transactivation by partial function P53 family mutants is increased by the presence of G-quadruplexes at a promoter site. Biochimie 2024, 216, 14–23. 10.1016/j.biochi.2023.09.026. PubMed DOI
Liu Y.; Su Z.; Tavana O.; Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024, 42, 946–967. 10.1016/j.ccell.2024.04.009. PubMed DOI PMC