Implementation of Antibiotic Stewardship in a University Hospital Setting
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-05-00340
Agentura Pro Zdravotnický Výzkum České Republiky
2020_021
IGA_LF
JG_2019_005
Junior Grant of UP in Olomouc
PubMed
33477923
PubMed Central
PMC7833368
DOI
10.3390/antibiotics10010093
PII: antibiotics10010093
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotic stewardship, clonal spread, consumption of antibiotics, resistance,
- Publikační typ
- časopisecké články MeSH
The article describes activities of an antibiotic center at a university hospital in the Czech Republic and presents the results of antibiotic stewardship program implementation over a period of 10 years. It provides data on the development of resistance of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus to selected antibiotic agents as well as consumption data for various antibiotic classes. The genetic basis of resistance to beta-lactam antibiotics and its clonal spread were also assessed. The study showed significant correlations between aminoglycoside consumption and resistance of Escherichia coli and Klebsiella pneumoniae to gentamicin (r = 0.712, r = 0.869), fluoroquinolone consumption and resistance of Klebsiella pneumoniae to ciprofloxacin (r = 0.896), aminoglycoside consumption and resistance of Pseudomonas aeruginosa to amikacin (r = 0.716), as well as carbapenem consumption and resistance of Pseudomonas aeruginosa to meropenem (r = 0.855). Genotyping of ESBL- positive isolates of Klebsiella pneumoniae and Escherichia coli showed a predominance of CTX-M-type; in AmpC-positive strains, DHA, EBC and CIT enzymes prevailed. Of 19 meropenem-resistant strains of Klebsiella pneumoniae, two were identified as NDM-positive. Clonal spread of these strains was not detected. The results suggest that comprehensive antibiotic stewardship implementation in a healthcare facility may help to maintain the effectiveness of antibiotics against bacterial pathogens. Particularly beneficial is the work of clinical microbiologists who, among other things, approve administration of antibiotics to patients with bacterial infections and directly participate in their antibiotic therapy.
Zobrazit více v PubMed
Dyar O.J., Huttner B., Schouten J., Pulcini C. ESGAP (ESCMID Study Group for Antimicrobial stewardshiP). What is antimicrobial stewardship? Clin. Microbiol. Infect. 2017;23:793–798. doi: 10.1016/j.cmi.2017.08.026. PubMed DOI
Srinivasan A. Antibiotic stewardship: Why we must, how we can. Clevel. Clin. J. Med. 2017;84:673–679. doi: 10.3949/ccjm.84gr.17003. PubMed DOI PMC
Luyt C.E., Bréchot N., Trouillet J.L., Chastre J. Antibiotic stewardship in the intensive care unit. Crit. Care. 2014;18:480. doi: 10.1186/s13054-014-0480-6. PubMed DOI PMC
Barlam T.F., Cosgrove S.E., Abbo L.M., MacDougall C., Schuetz A.N., Septimus E.J., Srinivasan A., Dellit T.H., Falck-Ytter Y.T., Fishman N.O., et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016;62:51–77. doi: 10.1093/cid/ciw118. PubMed DOI PMC
Goff D.A. Antibiotic Stewardship: The Health of the World Depends on It. Hosp. Pharm. 2018;53:214–216. doi: 10.1177/0018578718769964. PubMed DOI PMC
Karam G., Chastre J., Wilcox M.H., Vincent J.L. Antibiotic strategies in the era of multidrug resistance. Crit. Care. 2016;20:136. doi: 10.1186/s13054-016-1320-7. PubMed DOI PMC
Baur D., Gladstone B.P., Burkert F., Carrara E., Foschi F., Döbele S., Tacconelli E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017;17:990–1001. doi: 10.1016/S1473-3099(17)30325-0. PubMed DOI
Kollef M.H., Bassetti M., Francois B., Burnham J., Dimopoulos G., Garnacho-Montero J., Lipman J., Luyt C.E., Nicolau D.P., Postma M.J., et al. The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship. Intensive Care Med. 2017;43:1187–1197. doi: 10.1007/s00134-017-4682-7. PubMed DOI PMC
Laxminarayan R., Duse A., Wattal C., Zaidi A.K., Wertheim H.F., Sumpradit N., Vlieghe E., Hara G.L., Gould I.M., Goossens H., et al. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 2013;13:1057–1098. doi: 10.1016/S1473-3099(13)70318-9. PubMed DOI
The European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 1.0 December 2009–Version 10.0 January 2020. [(accessed on 16 December 2020)]; Available online: https://www.eucast.org/
WHO Collaborating Centre for Drug Statistics Methodology ATC/DDD Index 2020. [(accessed on 16 December 2020)]; Available online: https://www.whocc.no/atc_ddd_index/
Croxatto A., Prod’hom G., Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012;36:380–407. doi: 10.1111/j.1574-6976.2011.00298.x. PubMed DOI
Htoutou Sedlakova M., Hanulik V., Chroma M., Hricova K., Kolar M., Latal T., Schaumann R., Rodloff A.C. Phenotypic detection of broad-spectrum beta-lactamases in microbiological practice. Med. Sci. Monit. 2011;17:BR147–BR152. doi: 10.12659/MSM.881761. PubMed DOI PMC
Nordmann P., Poirel L., Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2012;18:1503–1507. doi: 10.3201/eid1809.120355. PubMed DOI PMC
Sila J., Sauer P., Kolar M. Comparison of the prevalence of genes coding for enterotoxins, exfoliatins, Panton-Valentine leukocidin and TSST-1 between methicillin-resistant and methicillin-susceptible isolates of Staphylococcus aureus at the University Hospital in Olomouc. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. Repub. 2009;153:215–218. doi: 10.5507/bp.2009.036. PubMed DOI
Ellington M.J., Kistler J., Livermore D.M., Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J. Antimicrob. Chemother. 2007;59:321–322. doi: 10.1093/jac/dkl481. PubMed DOI
Mlynarcik P., Roderova M., Kolar M. Primer evaluation for PCR and its application for detection of carbapenemases in Enterobacteriaceae. Jundishapur J. Microb. 2016;9:e29314. doi: 10.5812/jjm.29314. PubMed DOI PMC
Mlynarcik P., Bardon J., Htoutou Sedlakova M., Prochazkova P., Kolar M. Identification of novel OXA-134-like beta-lactamases in Acinetobacter lwoffii and Acinetobacter schindleri isolated from chicken litter. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2019;163:141–146. doi: 10.5507/bp.2018.037. PubMed DOI
Husickova V., Cekanova L., Chroma M., Htoutou Sedlakova M., Hricova K., Kolar M. Carriage of ESBL- and AmpC-positive Enterobacteriaceae in the gastrointestinal tract of community subjects and hospitalized patients in the Czech Republic. Biomed. Pap. Med. Fac. Univ Palacky Olomouc Czechoslov. Repub. 2012;156:348–353. doi: 10.5507/bp.2012.039. PubMed DOI
Tenover F.C., Arbeit R.D., Goering R.V., Mickelsen P.A., Murray B.E., Persing D.H., Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995;33:2233–2239. doi: 10.1128/JCM.33.9.2233-2239.1995. PubMed DOI PMC
Luna C.M., Vujacich P., Niederman M.S., Vay C., Gherardi C., Matera J., Jolly E.C. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest. 1997;111:676–685. doi: 10.1378/chest.111.3.676. PubMed DOI
Tumbarello M., Sanguinetti M., Montuori E., Trecarichi E.M., Posteraro B., Fiori B., Citton R., D’Inzeo T., Fadda G., Cauda R., et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-ß-lactamase-producing Enterobacteriaceae: Importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2007;51:1987–1994. doi: 10.1128/AAC.01509-06. PubMed DOI PMC
Kang C.I., Chung D.R., Ko K.S., Peck K.R., Song J.H. Korean Network for Study of Infectious Diseases. Risk factors for infection and treatment outcome of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae bacteremia in patients with hematologic malignancy. Ann. Hematol. 2012;91:115–121. doi: 10.1007/s00277-011-1247-7. PubMed DOI
Herkel T., Uvizl R., Doubravska L., Adamus M., Gabrhelik T., Htoutou Sedlakova M., Kolar M., Hanulik V., Pudova V., Langova K., et al. Epidemiology of hospital-acquired pneumonia: Results of a Central European multicenter, prospective, observational study compared with data from the European region. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. Repub. 2016;160:448–455. doi: 10.5507/bp.2016.014. PubMed DOI
De Kraker M.E., Wolkewitz M., Davey P.G., Koller W., Berger J., Nagler J., Icket C., Kalenic S., Horvatic J., Seifert H., et al. Clinical impact of antimicrobial resistance in European hospitals: Excess mortality and length of hospital stay related to methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob. Agents Chemother. 2011;55:1598–1605. doi: 10.1128/AAC.01157-10. PubMed DOI PMC
European Centre for Disease Prevention and Control . Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2019. ECDC; Stockholm, Sweden: 2020.
European Antimicrobial Resistance Surveillance Network (EARS-Net) [(accessed on 16 December 2020)]; Available online: https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc.
Urbanek K., Kolar M., Strojil J., Koukalová D., Čekanová L., Hejnar P. Utilization of fluoroquinolones and Escherichia coli resistance in urinary tract infection: Inpatients and outpatients. Pharmacoepidemiol. Drug Saf. 2005;14:741–745. doi: 10.1002/pds.1110. PubMed DOI
Urbanek K., Kolar M., Loveckova Y., Strojil J., Santava L. Influence of 3rd generation cephalosporin utilization on the occurrence of ESBL-positive Klebsiella pneumoniae strains. J. Clin. Pharm. Ther. 2007;32:403–408. doi: 10.1111/j.1365-2710.2007.00836.x. PubMed DOI
Kolar M., Urbanek K., Latal T. Antibiotic selective pressure and development of bacterial resistance. Int. J. Antimicrob. Agents. 2001;17:357–363. doi: 10.1016/S0924-8579(01)00317-X. PubMed DOI
Urbanek K., Kolar M., Cekanova L. Utilisation of macrolides and the development of Streptococcus pyogenes resistance to erythromycin. Pharm. World Sci. 2005;27:104–107. doi: 10.1007/s11096-004-6607-0. PubMed DOI
Bell B.G., Schellevis F., Stobberingh E., Goossens H., Pringle M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infectious Dis. 2014;14:13. doi: 10.1186/1471-2334-14-13. PubMed DOI PMC
Kim B., Kim Y., Hwang H., Kim J., Kim S.W., Bae I.G., Choi W.S., Jung S.I., Jeong H.W., Pai H. Trends and correlation between antibiotic usage and resistance pattern among hospitalized patients at university hospitals in Korea, 2004 to 2012: A nationwide multicenter study. Medicine. 2018;97:e13719. doi: 10.1097/MD.0000000000013719. PubMed DOI PMC
Mladenovic-Antic S., Kocic B., Velickovic-Radovanovic R., Dinic M., Petrovic J., Randjelovic G., Mitic R. Correlation between antimicrobial consumption and antimicrobial resistance of Pseudomonas aeruginosa in a hospital setting: A 10-year study. J. Clin. Pharm. Ther. 2016;41:532–537. doi: 10.1111/jcpt.12432. PubMed DOI
Zequinao T., Gasparetto J., dos Santos Oliveira D., Takahara Silva G., Telles J.P., Tuon F.F. A broad-spectrum beta-lactam-sparing stewardship program in a middle-income country public hospital: Antibiotic use and expenditure outcomes and antimicrobial susceptibility profiles. Braz. J. Infect. Dis. 2020;24:221–230. doi: 10.1016/j.bjid.2020.05.005. PubMed DOI PMC
Falagas M.E., Karageorgopoulos D.E. Extended-spectrum beta-lactamase-producing organisms. J. Hosp. Infect. 2009;73:345–354. doi: 10.1016/j.jhin.2009.02.021. PubMed DOI
Che Hamzah A.M., Yeo C.C., Puah S.M., Chua K.H., Rahman N.I.A., Abdullah F.H., Othman N., Chew C.H. Tigecycline and inducible clindamycin resistance in clinical isolates of methicillin-resistant Staphylococcus aureus from Terengganu, Malaysia. J. Med. Microbiol. 2019;68:1299–1305. doi: 10.1099/jmm.0.000993. PubMed DOI
Martinez J.L., Baquero F. Mutation Frequencies and Antibiotic Resistance. Antimicrob. Agents Chemother. 2000;44:1771–1777. doi: 10.1128/AAC.44.7.1771-1777.2000. PubMed DOI PMC
Zhao X., Drlica K. Restricting the Selection of Antibiotic-Resistant Mutants: Measurement and Potential Uses of the Mutant Selection Window. JID. 2002;185:561–565. doi: 10.1086/338571. PubMed DOI
Ho C.M., Ho M.W., Liu Y.C., Toh H.S., Lee Y.L., Liu Y.M., Huang C.C., Lu P.L., Liu C.E., Chen Y.H., et al. Correlation between carbapenem consumption and resistance to carbapenems among Enterobacteriaceae isolates collected from patients with intra-abdominal infections at five medical centers in Taiwan, 2006–2010. Int. J. Antimicrob. Agents. 2012;40:S24–S28. doi: 10.1016/S0924-8579(12)70006-7. PubMed DOI
Lai C.-C., Wang C.-Y., Chu C.-C., Tan C.-K., Lu C.-L., Lee Y.-C., Huang Y.-T., Lee P.-I., Hsueh P.-R. Correlation between antibiotic consumption and resistance of Gramnegative bacteria causing healthcare-associated infections at a university hospital in Taiwan from 2000 to 2009. J. Antimicrob. Chemother. 2011;66:1374–1382. doi: 10.1093/jac/dkr103. PubMed DOI
Altunsoy A., Aypak C., Azap A., Ergönül Ö., Balik I. The impact of a nationwide antibiotic restriction program on antibiotic usage and resistance against nosocomial pathogens in Turkey. Int. J. Med. Sci. 2011;8:339–344. doi: 10.7150/ijms.8.339. PubMed DOI PMC
Htoutou Sedlakova M., Urbanek K., Vojtova V., Suchankova H., Imwensi P., Kolar M. Antibiotic consumption and its influence on the resistance in Enterobacteriaceae. BMC Res. Notes. 2014;7:454. PubMed PMC
Barbosa T.M., Levy S.B. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updates. 2000;3:303–311. doi: 10.1054/drup.2000.0167. PubMed DOI
Händel N., Otte S., Jonker M., Brul S., ter Kuile B.H. Factors that affect transfer of the IncI1 β-lactam resistance plasmid pESBL-283 between E. coli strains. PLoS ONE. 2015;10:e0123039. doi: 10.1371/journal.pone.0123039. PubMed DOI PMC
Merlin C. Reducing the Consumption of Antibiotics: Would That Be Enough to Slow Down the Dissemination of Resistances in the Downstream Environment? Front. Microbiol. 2020;11:33. doi: 10.3389/fmicb.2020.00033. PubMed DOI PMC
Kolar M., Cermak P., Hobzova L., Bogdanova K., Neradova K., Mlynarcik P., Bostik P. Antibiotic Resistance in Nosocomial Bacteria Isolated from Infected Wounds of Hospitalized Patients in Czech Republic. Antibiotics. 2020;9:342. doi: 10.3390/antibiotics9060342. PubMed DOI PMC
Hricová K., Štosová T., Kučová P., Fišerová K., Bardoň J., Kolář M. Analysis of Vancomycin-Resistant Enterococci in Hemato-Oncological Patients. Antibiotics. 2020;9:785. doi: 10.3390/antibiotics9110785. PubMed DOI PMC
Htoutou Sedlaková M., Fišerová K., Kolář M. Bacteremia pathogens in the University Hospital Olomouc. Klin. Mikrobiol. Infekc. Lek. 2020;26:4–11. PubMed
Kolar M., Htoutou Sedláková M., Pudova V., Roderova M., Novosad J., Senkyrikova M., Szotkowska R., Indrak K. Incidence of fecal Enterobacteriaceae producing broad-spectrum beta-lactamases in patients with hematological malignancies. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. Repub. 2014;159:100–103. doi: 10.5507/bp.2014.042. PubMed DOI
Yang P., Chen Y., Jiang S., Shen P., Lu X., Xiao Y. Association between antibiotic consumption and the rate of carbapenem-resistant Gram-negative bacteria from China based on 153 tertiary hospitals data in 2014. Antimicrob. Resist. Infect. Control. 2018;7:137. doi: 10.1186/s13756-018-0430-1. PubMed DOI PMC
Uzunović S., Bedenić B., Budimir A., Kamberović F., Ibrahimagić A., Delić-Bikić S., Sivec S., Meštrović T., Varda Brkić D., Rijnders M.I., et al. Emergency (clonal spread) of methicillin-resistant Staphylococcus aureus (MRSA), extended spectrum (ESBL)--and AmpC beta-lactamase-producing Gram-negative bacteria infections at Pediatric Department, Bosnia and Herzegovina. Wien. Klin. Wochenschr. 2014;126:747–756. doi: 10.1007/s00508-014-0597-2. PubMed DOI
Earls M.R., Coleman D.C., Brennan G.I., Fleming T., Monecke S., Slickers P., Ehricht R., Shore A.C. Intra-Hospital, Inter-Hospital and Intercontinental Spread of ST78 MRSA From Two Neonatal Intensive Care Unit Outbreaks Established Using Whole-Genome Sequencing. Front. Microbiol. 2018;9:1485. doi: 10.3389/fmicb.2018.01485. PubMed DOI PMC
Strauß L., Stegger M., Akpaka P.E., Alabi A., Breurec S., Coombs G., Egyir B., Larsen A.R., Laurent F., Monecke S., et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc. Natl. Acad. Sci. USA. 2017;114:E10596–E10604. doi: 10.1073/pnas.1702472114. PubMed DOI PMC
Bacterial Infections, Antimicrobial Resistance and Antibiotic Therapy
In Silico Analysis of Extended-Spectrum β-Lactamases in Bacteria