Insights into the Resistome and Phylogenomics of a ST195 Multidrug-Resistant Acinetobacter baumannii Clinical Isolate from the Czech Republic

. 2021 Oct 13 ; 11 (10) : . [epub] 20211013

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu kazuistiky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34685451

Grantová podpora
JG_2019_005 Junior Grant of Palacky University Olomouc
SPP 210015017 Increasing Internationalization of the Faculty of Medicine and Dentistry, Palacky University Olomouc

Increasing antimicrobial resistance in nosocomial pathogens, such as Acinetobacter baumannii, is becoming a serious threat to public health. It is necessary to detect β-lactamase-producing microorganisms in clinical settings to be able to control the spread of carbapenem resistance. This study was conducted to evaluate the presence of β-lactamases in a selected clinical isolate of A. baumannii of ST2P/ST195Ox and to characterize possible enzymes, as well as its β-lactam resistome, using PCR and whole-genome sequencing analysis. PCR and sequencing confirmed that the isolate harbored five bla gene alleles, namely, blaADC-73, blaTEM-1, blaOXA-23, blaOXA-58 and blaOXA-66, as well as aminoglycosides, macrolides, sulfonamides and tetracyclines resistance determinants, which were either chromosomally and/or plasmid located. Furthermore, a gene order comparison using MAUVE alignment showed multiple changes compared with the clinical isolate of Malaysian A. baumannii AC30 genome and 76 regions with high homology. This study suggests that resistance to β-lactams in this A. baumannii isolate is mainly due to an overproduction of β-lactamases in combination with other resistance mechanism (efflux pump system).

Zobrazit více v PubMed

Hansen G.T. Continuous Evolution: Perspective on the Epidemiology of Carbapenemase Resistance Among Enterobacterales and Other Gram-Negative Bacteria. Infect. Dis. Ther. 2021;10:75–92. doi: 10.1007/s40121-020-00395-2. PubMed DOI PMC

Tenover F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 2006;119:S3–S10. doi: 10.1016/j.amjmed.2006.03.011. PubMed DOI

Peleg A.Y., Seifert H., Paterson D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008;21:538–582. doi: 10.1128/CMR.00058-07. PubMed DOI PMC

Adams M.D., Goglin K., Molyneaux N., Hujer K.M., Lavender H., Jamison J.J., MacDonald I.J., Martin K.M., Russo T., Campagnari A.A., et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J. Bacteriol. 2008;190:8053–8064. doi: 10.1128/JB.00834-08. PubMed DOI PMC

ECDC . European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe 2018. ECDC; Stockholm, Sweden: 2019. [(accessed on 20 April 2020)]. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018.

Dortet L., Agathine A., Naas T., Cuzon G., Poirel L., Nordmann P. Evaluation of the RAPIDEC (R) CARBA NP, the Rapid CARB Screen (R) and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2015;70:3014–3022. doi: 10.1093/jac/dkv213. PubMed DOI

Mlynarcik P., Bardon J., Htoutou Sedlakova M., Prochazkova P., Kolar M. Identification of novel OXA-134-like beta-lactamases in Acinetobacter lwoffii and Acinetobacter schindleri isolated from chicken litter. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2019;163:141–146. doi: 10.5507/bp.2018.037. PubMed DOI

Mlynarcik P., Dolejska M., Vagnerova I., Kutilova I., Kolar M. Detection of clinically important beta-lactamases by using PCR. FEMS Microbiol. Lett. 2021;368:fnab068. doi: 10.1093/femsle/fnab068. PubMed DOI

Kolar M., Htoutou Sedlakova M., Urbanek K., Mlynarcik P., Roderova M., Hricova K., Mezerova K., Kucova P., Zapletalova J., Fiserova K., et al. Implementation of Antibiotic Stewardship in a University Hospital Setting. Antibiotics. 2021;10:93. doi: 10.3390/antibiotics10010093. PubMed DOI PMC

Lee C.R., Lee J.H., Park M., Park K.S., Bae I.K., Kim Y.B., Cha C.J., Jeong B.C., Lee S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017;7:55. doi: 10.3389/fcimb.2017.00055. PubMed DOI PMC

Mlynarcik P., Chalachanova A., Vagnerova I., Holy O., Zatloukalova S., Kolar M. PCR Detection of Oxacillinases in Bacteria. Microb. Drug Resist. 2020;26:1023–1037. doi: 10.1089/mdr.2019.0330. PubMed DOI

Mlynarcik P., Roderova M., Kolar M. Primer Evaluation for PCR and its Application for Detection of Carbapenemases in Enterobacteriaceae. Jundishapur J. Microbiol. 2016;9:e29314. doi: 10.5812/jjm.29314. PubMed DOI PMC

Pagani L., Dell’Amico E., Migliavacca R., D’Andrea M.M., Giacobone E., Amicosante G., Romero E., Rossolini G.M. Multiple CTX-M-Type extended-spectrum b-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J. Clin. Microbiol. 2003;41:4264–4269. doi: 10.1128/JCM.41.9.4264-4269.2003. PubMed DOI PMC

Poirel L., Nordmann P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene bla(OXA-58) in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2006;50:1442–1448. doi: 10.1128/AAC.50.4.1442-1448.2006. PubMed DOI PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Jolley K.A., Bray J.E., Maiden M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. doi: 10.12688/wellcomeopenres.14826.1. PubMed DOI PMC

Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC

Naas T., Oueslati S., Bonnin R.A., Dabos M.L., Zavala A., Dortet L., Retailleau P., Iorga B.I. Beta-lactamase database (BLDB)—Structure and function. J. Enzyme Inhib. Med. Chem. 2017;32:917–919. doi: 10.1080/14756366.2017.1344235. PubMed DOI PMC

Solovyev V., Salamov A. Automatic annotation of microbial genomes and metagenomic sequences. In: Li R.W., editor. Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies. Nova Science Publishers; Hauppauge, NY, USA: 2011. pp. 61–78.

Falagas M.E., Bliziotis I.A. Pandrug-resistant Gram-negative bacteria: The dawn of the post-antibiotic era? Int. J. Antimicrob. Agents. 2007;29:630–636. doi: 10.1016/j.ijantimicag.2006.12.012. PubMed DOI

Poirel L., Bercot B., Millemann Y., Bonnin R.A., Pannaux G., Nordmann P. Carbapenemase-producing Acinetobacter spp. in cattle, France. Emerg. Infect. Dis. J. 2012;18:523–525. doi: 10.3201/eid1803.111330. PubMed DOI PMC

Wang Y., Wu C., Zhang Q., Qi J., Liu H., Wang Y., He T., Ma L., Lai J., Shen Z., et al. Identification of New Delhi metallo-beta-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS ONE. 2012;7:e37152. doi: 10.1371/journal.pone.0037152. PubMed DOI PMC

Bardon J., Mlynarcik P., Procházkova P., Roderova M., Mezerova K., Kolar M. Occurrence of bacteria with a dangerous extent of antibiotic resistance in poultry in the Central Region of Moravia. Acta Vet. Brno. 2018;87:165–172. doi: 10.2754/avb201887020165. DOI

Qu J., Du Y., Yu R., Lu X. The First Outbreak Caused by Acinetobacter baumannii ST208 and ST195 in China. Biomed. Res. Int. 2016;2016:9254907. doi: 10.1155/2016/9254907. PubMed DOI PMC

Hammerum A.M., Hansen F., Skov M.N., Stegger M., Andersen P.S., Holm A., Jakobsen L., Justesen U.S. Investigation of a possible outbreak of carbapenem-resistant Acinetobacter baumannii in Odense, Denmark using PFGE, MLST and whole-genome-based SNPs. J. Antimicrob. Chemother. 2015;70:1965–1968. doi: 10.1093/jac/dkv072. PubMed DOI

Karah N., Haldorsen B., Hermansen N.O., Tveten Y., Ragnhildstveit E., Skutlaberg D.H., Tofteland S., Sundsfjord A., Samuelsen O. Emergence of OXA-carbapenemase- and 16S rRNA methylase-producing international clones of Acinetobacter baumannii in Norway. J. Med. Microbiol. 2011;60:515–521. doi: 10.1099/jmm.0.028340-0. PubMed DOI

Quale J., Bratu S., Gupta J., Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 2006;50:1633–1641. doi: 10.1128/AAC.50.5.1633-1641.2006. PubMed DOI PMC

Poirel L., Nordmann P. Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. Clin. Microbiol. Infect. 2006;12:826–836. doi: 10.1111/j.1469-0691.2006.01456.x. PubMed DOI

Poirel L., Pitout J.D., Nordmann P. Carbapenemases: Molecular diversity and clinical consequences. Future Microbiol. 2007;2:501–512. doi: 10.2217/17460913.2.5.501. PubMed DOI

Ford P.J., Avison M.B. Evolutionary mapping of the SHV beta-lactamase and evidence for two separate IS26-dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J. Antimicrob. Chemother. 2004;54:69–75. doi: 10.1093/jac/dkh251. PubMed DOI

Rodriguez-Villodres A., Gil-Marques M.L., Alvarez-Marin R., Bonnin R.A., Pachon-Ibanez M.E., Aguilar-Guisado M., Naas T., Aznar J., Pachon J., Lepe J.A., et al. Extended-spectrum resistance to beta-lactams/beta-lactamase inhibitors (ESRI) evolved from low-level resistant Escherichia coli. J. Antimicrob. Chemother. 2020;75:77–85. doi: 10.1093/jac/dkz393. PubMed DOI

Zhu L.J., Chen X.Y., Hou P.F. Mutation of CarO participates in drug resistance in imipenem-resistant Acinetobacter baumannii. J. Clin. Lab. Anal. 2019;33:e22976. doi: 10.1002/jcla.22976. PubMed DOI PMC

Choudhury D., Talukdar A.D., Choudhury M.D., Maurya A.P., Chanda D.D., Chakravorty A., Bhattacharjee A. Carbapenem nonsusceptibility with modified OprD in clinical isolates of Pseudomonas aeruginosa from India. Indian J. Med. Microbiol. 2017;35:137–139. doi: 10.4103/ijmm.IJMM_15_220. PubMed DOI

Estepa V., Rojo-Bezares B., Azcona-Gutierrez J.M., Olarte I., Torres C., Saenz Y. Characterisation of carbapenem-resistance mechanisms in clinical Pseudomonas aeruginosa isolates recovered in a Spanish hospital. Enferm. Infecc. Microbiol. Clin. 2017;35:141–147. doi: 10.1016/j.eimc.2015.12.014. PubMed DOI

Vila J., Marti S., Sanchez-Cespedes J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 2007;59:1210–1215. doi: 10.1093/jac/dkl509. PubMed DOI

Yoon E.J., Courvalin P., Grillot-Courvalin C. RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: Major role for AdeABC overexpression and AdeRS mutations. Antimicrob. Agents Chemother. 2013;57:2989–2995. doi: 10.1128/AAC.02556-12. PubMed DOI PMC

Coyne S., Courvalin P., Perichon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob. Agents Chemother. 2011;55:947–953. doi: 10.1128/AAC.01388-10. PubMed DOI PMC

Damier-Piolle L., Magnet S., Bremont S., Lambert T., Courvalin P. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother. 2008;52:557–562. doi: 10.1128/AAC.00732-07. PubMed DOI PMC

Coyne S., Rosenfeld N., Lambert T., Courvalin P., Perichon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010;54:4389–4393. doi: 10.1128/AAC.00155-10. PubMed DOI PMC

Zamorano L., Miro E., Juan C., Gomez L., Bou G., Gonzalez-Lopez J.J., Martinez-Martinez L., Aracil B., Conejo M.C., Oliver A., et al. Mobile genetic elements related to the diffusion of plasmid-mediated AmpC beta-lactamases or carbapenemases from Enterobacteriaceae: Findings from a multicenter study in Spain. Antimicrob. Agents Chemother. 2015;59:5260–5266. doi: 10.1128/AAC.00562-15. PubMed DOI PMC

Giles W.P., Benson A.K., Olson M.E., Hutkins R.W., Whichard J.M., Winokur P.L., Fey P.D. DNA sequence analysis of regions surrounding blaCMY-2 from multiple Salmonella plasmid backbones. Antimicrob. Agents Chemother. 2004;48:2845–2852. doi: 10.1128/AAC.48.8.2845-2852.2004. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace