Insights into the Resistome and Phylogenomics of a ST195 Multidrug-Resistant Acinetobacter baumannii Clinical Isolate from the Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kazuistiky, časopisecké články
Grantová podpora
JG_2019_005
Junior Grant of Palacky University Olomouc
SPP 210015017
Increasing Internationalization of the Faculty of Medicine and Dentistry, Palacky University Olomouc
PubMed
34685451
PubMed Central
PMC8537504
DOI
10.3390/life11101079
PII: life11101079
Knihovny.cz E-zdroje
- Klíčová slova
- Acinetobacter baumannii, PCR, antibiotic resistance, bacteria, β-lactamase,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Increasing antimicrobial resistance in nosocomial pathogens, such as Acinetobacter baumannii, is becoming a serious threat to public health. It is necessary to detect β-lactamase-producing microorganisms in clinical settings to be able to control the spread of carbapenem resistance. This study was conducted to evaluate the presence of β-lactamases in a selected clinical isolate of A. baumannii of ST2P/ST195Ox and to characterize possible enzymes, as well as its β-lactam resistome, using PCR and whole-genome sequencing analysis. PCR and sequencing confirmed that the isolate harbored five bla gene alleles, namely, blaADC-73, blaTEM-1, blaOXA-23, blaOXA-58 and blaOXA-66, as well as aminoglycosides, macrolides, sulfonamides and tetracyclines resistance determinants, which were either chromosomally and/or plasmid located. Furthermore, a gene order comparison using MAUVE alignment showed multiple changes compared with the clinical isolate of Malaysian A. baumannii AC30 genome and 76 regions with high homology. This study suggests that resistance to β-lactams in this A. baumannii isolate is mainly due to an overproduction of β-lactamases in combination with other resistance mechanism (efflux pump system).
Zobrazit více v PubMed
Hansen G.T. Continuous Evolution: Perspective on the Epidemiology of Carbapenemase Resistance Among Enterobacterales and Other Gram-Negative Bacteria. Infect. Dis. Ther. 2021;10:75–92. doi: 10.1007/s40121-020-00395-2. PubMed DOI PMC
Tenover F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 2006;119:S3–S10. doi: 10.1016/j.amjmed.2006.03.011. PubMed DOI
Peleg A.Y., Seifert H., Paterson D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008;21:538–582. doi: 10.1128/CMR.00058-07. PubMed DOI PMC
Adams M.D., Goglin K., Molyneaux N., Hujer K.M., Lavender H., Jamison J.J., MacDonald I.J., Martin K.M., Russo T., Campagnari A.A., et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J. Bacteriol. 2008;190:8053–8064. doi: 10.1128/JB.00834-08. PubMed DOI PMC
ECDC . European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe 2018. ECDC; Stockholm, Sweden: 2019. [(accessed on 20 April 2020)]. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018.
Dortet L., Agathine A., Naas T., Cuzon G., Poirel L., Nordmann P. Evaluation of the RAPIDEC (R) CARBA NP, the Rapid CARB Screen (R) and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2015;70:3014–3022. doi: 10.1093/jac/dkv213. PubMed DOI
Mlynarcik P., Bardon J., Htoutou Sedlakova M., Prochazkova P., Kolar M. Identification of novel OXA-134-like beta-lactamases in Acinetobacter lwoffii and Acinetobacter schindleri isolated from chicken litter. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2019;163:141–146. doi: 10.5507/bp.2018.037. PubMed DOI
Mlynarcik P., Dolejska M., Vagnerova I., Kutilova I., Kolar M. Detection of clinically important beta-lactamases by using PCR. FEMS Microbiol. Lett. 2021;368:fnab068. doi: 10.1093/femsle/fnab068. PubMed DOI
Kolar M., Htoutou Sedlakova M., Urbanek K., Mlynarcik P., Roderova M., Hricova K., Mezerova K., Kucova P., Zapletalova J., Fiserova K., et al. Implementation of Antibiotic Stewardship in a University Hospital Setting. Antibiotics. 2021;10:93. doi: 10.3390/antibiotics10010093. PubMed DOI PMC
Lee C.R., Lee J.H., Park M., Park K.S., Bae I.K., Kim Y.B., Cha C.J., Jeong B.C., Lee S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017;7:55. doi: 10.3389/fcimb.2017.00055. PubMed DOI PMC
Mlynarcik P., Chalachanova A., Vagnerova I., Holy O., Zatloukalova S., Kolar M. PCR Detection of Oxacillinases in Bacteria. Microb. Drug Resist. 2020;26:1023–1037. doi: 10.1089/mdr.2019.0330. PubMed DOI
Mlynarcik P., Roderova M., Kolar M. Primer Evaluation for PCR and its Application for Detection of Carbapenemases in Enterobacteriaceae. Jundishapur J. Microbiol. 2016;9:e29314. doi: 10.5812/jjm.29314. PubMed DOI PMC
Pagani L., Dell’Amico E., Migliavacca R., D’Andrea M.M., Giacobone E., Amicosante G., Romero E., Rossolini G.M. Multiple CTX-M-Type extended-spectrum b-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J. Clin. Microbiol. 2003;41:4264–4269. doi: 10.1128/JCM.41.9.4264-4269.2003. PubMed DOI PMC
Poirel L., Nordmann P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene bla(OXA-58) in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2006;50:1442–1448. doi: 10.1128/AAC.50.4.1442-1448.2006. PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Jolley K.A., Bray J.E., Maiden M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. doi: 10.12688/wellcomeopenres.14826.1. PubMed DOI PMC
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC
Naas T., Oueslati S., Bonnin R.A., Dabos M.L., Zavala A., Dortet L., Retailleau P., Iorga B.I. Beta-lactamase database (BLDB)—Structure and function. J. Enzyme Inhib. Med. Chem. 2017;32:917–919. doi: 10.1080/14756366.2017.1344235. PubMed DOI PMC
Solovyev V., Salamov A. Automatic annotation of microbial genomes and metagenomic sequences. In: Li R.W., editor. Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies. Nova Science Publishers; Hauppauge, NY, USA: 2011. pp. 61–78.
Falagas M.E., Bliziotis I.A. Pandrug-resistant Gram-negative bacteria: The dawn of the post-antibiotic era? Int. J. Antimicrob. Agents. 2007;29:630–636. doi: 10.1016/j.ijantimicag.2006.12.012. PubMed DOI
Poirel L., Bercot B., Millemann Y., Bonnin R.A., Pannaux G., Nordmann P. Carbapenemase-producing Acinetobacter spp. in cattle, France. Emerg. Infect. Dis. J. 2012;18:523–525. doi: 10.3201/eid1803.111330. PubMed DOI PMC
Wang Y., Wu C., Zhang Q., Qi J., Liu H., Wang Y., He T., Ma L., Lai J., Shen Z., et al. Identification of New Delhi metallo-beta-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS ONE. 2012;7:e37152. doi: 10.1371/journal.pone.0037152. PubMed DOI PMC
Bardon J., Mlynarcik P., Procházkova P., Roderova M., Mezerova K., Kolar M. Occurrence of bacteria with a dangerous extent of antibiotic resistance in poultry in the Central Region of Moravia. Acta Vet. Brno. 2018;87:165–172. doi: 10.2754/avb201887020165. DOI
Qu J., Du Y., Yu R., Lu X. The First Outbreak Caused by Acinetobacter baumannii ST208 and ST195 in China. Biomed. Res. Int. 2016;2016:9254907. doi: 10.1155/2016/9254907. PubMed DOI PMC
Hammerum A.M., Hansen F., Skov M.N., Stegger M., Andersen P.S., Holm A., Jakobsen L., Justesen U.S. Investigation of a possible outbreak of carbapenem-resistant Acinetobacter baumannii in Odense, Denmark using PFGE, MLST and whole-genome-based SNPs. J. Antimicrob. Chemother. 2015;70:1965–1968. doi: 10.1093/jac/dkv072. PubMed DOI
Karah N., Haldorsen B., Hermansen N.O., Tveten Y., Ragnhildstveit E., Skutlaberg D.H., Tofteland S., Sundsfjord A., Samuelsen O. Emergence of OXA-carbapenemase- and 16S rRNA methylase-producing international clones of Acinetobacter baumannii in Norway. J. Med. Microbiol. 2011;60:515–521. doi: 10.1099/jmm.0.028340-0. PubMed DOI
Quale J., Bratu S., Gupta J., Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 2006;50:1633–1641. doi: 10.1128/AAC.50.5.1633-1641.2006. PubMed DOI PMC
Poirel L., Nordmann P. Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. Clin. Microbiol. Infect. 2006;12:826–836. doi: 10.1111/j.1469-0691.2006.01456.x. PubMed DOI
Poirel L., Pitout J.D., Nordmann P. Carbapenemases: Molecular diversity and clinical consequences. Future Microbiol. 2007;2:501–512. doi: 10.2217/17460913.2.5.501. PubMed DOI
Ford P.J., Avison M.B. Evolutionary mapping of the SHV beta-lactamase and evidence for two separate IS26-dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J. Antimicrob. Chemother. 2004;54:69–75. doi: 10.1093/jac/dkh251. PubMed DOI
Rodriguez-Villodres A., Gil-Marques M.L., Alvarez-Marin R., Bonnin R.A., Pachon-Ibanez M.E., Aguilar-Guisado M., Naas T., Aznar J., Pachon J., Lepe J.A., et al. Extended-spectrum resistance to beta-lactams/beta-lactamase inhibitors (ESRI) evolved from low-level resistant Escherichia coli. J. Antimicrob. Chemother. 2020;75:77–85. doi: 10.1093/jac/dkz393. PubMed DOI
Zhu L.J., Chen X.Y., Hou P.F. Mutation of CarO participates in drug resistance in imipenem-resistant Acinetobacter baumannii. J. Clin. Lab. Anal. 2019;33:e22976. doi: 10.1002/jcla.22976. PubMed DOI PMC
Choudhury D., Talukdar A.D., Choudhury M.D., Maurya A.P., Chanda D.D., Chakravorty A., Bhattacharjee A. Carbapenem nonsusceptibility with modified OprD in clinical isolates of Pseudomonas aeruginosa from India. Indian J. Med. Microbiol. 2017;35:137–139. doi: 10.4103/ijmm.IJMM_15_220. PubMed DOI
Estepa V., Rojo-Bezares B., Azcona-Gutierrez J.M., Olarte I., Torres C., Saenz Y. Characterisation of carbapenem-resistance mechanisms in clinical Pseudomonas aeruginosa isolates recovered in a Spanish hospital. Enferm. Infecc. Microbiol. Clin. 2017;35:141–147. doi: 10.1016/j.eimc.2015.12.014. PubMed DOI
Vila J., Marti S., Sanchez-Cespedes J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 2007;59:1210–1215. doi: 10.1093/jac/dkl509. PubMed DOI
Yoon E.J., Courvalin P., Grillot-Courvalin C. RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: Major role for AdeABC overexpression and AdeRS mutations. Antimicrob. Agents Chemother. 2013;57:2989–2995. doi: 10.1128/AAC.02556-12. PubMed DOI PMC
Coyne S., Courvalin P., Perichon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob. Agents Chemother. 2011;55:947–953. doi: 10.1128/AAC.01388-10. PubMed DOI PMC
Damier-Piolle L., Magnet S., Bremont S., Lambert T., Courvalin P. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother. 2008;52:557–562. doi: 10.1128/AAC.00732-07. PubMed DOI PMC
Coyne S., Rosenfeld N., Lambert T., Courvalin P., Perichon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010;54:4389–4393. doi: 10.1128/AAC.00155-10. PubMed DOI PMC
Zamorano L., Miro E., Juan C., Gomez L., Bou G., Gonzalez-Lopez J.J., Martinez-Martinez L., Aracil B., Conejo M.C., Oliver A., et al. Mobile genetic elements related to the diffusion of plasmid-mediated AmpC beta-lactamases or carbapenemases from Enterobacteriaceae: Findings from a multicenter study in Spain. Antimicrob. Agents Chemother. 2015;59:5260–5266. doi: 10.1128/AAC.00562-15. PubMed DOI PMC
Giles W.P., Benson A.K., Olson M.E., Hutkins R.W., Whichard J.M., Winokur P.L., Fey P.D. DNA sequence analysis of regions surrounding blaCMY-2 from multiple Salmonella plasmid backbones. Antimicrob. Agents Chemother. 2004;48:2845–2852. doi: 10.1128/AAC.48.8.2845-2852.2004. PubMed DOI PMC