Metastable Brominated Nanodiamond Surface Enables Room Temperature and Catalysis-Free Amine Chemistry

. 2022 Feb 03 ; 13 (4) : 1147-1158. [epub] 20220127

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35084184

Grantová podpora
R25 GM071381 NIGMS NIH HHS - United States
SC3 GM125574 NIGMS NIH HHS - United States
T34 GM008253 NIGMS NIH HHS - United States

Bromination of high-pressure, high-temperature (HPHT) nanodiamond (ND) surfaces has not been explored and can open new avenues for increased chemical reactivity and diamond lattice covalent bond formation. The large bond dissociation energy of the diamond lattice-oxygen bond is a challenge that prevents new bonds from forming, and most researchers simply use oxygen-terminated NDs (alcohols and acids) as reactive species. In this work, we transformed a tertiary-alcohol-rich ND surface to an amine surface with ∼50% surface coverage and was limited by the initial rate of bromination. We observed that alkyl bromide moieties are highly labile on HPHT NDs and are metastable as previously found using density functional theory. The strong leaving group properties of the alkyl bromide intermediate were found to form diamond-nitrogen bonds at room temperature and without catalysts. This robust pathway to activate a chemically inert ND surface broadens the modalities for surface termination, and the unique surface properties of brominated and aminated NDs are impactful to researchers for chemically tuning diamond for quantum sensing or biolabeling applications.

Zobrazit více v PubMed

Saikia I; Borah AJ; Phukan P Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev 2016, 116, 6837–7042. PubMed

Ullmann F; Bielecki J Ueber Synthesen in Der Biphenylreihe. Berichte der deutschen chemischen Gesellschaft 1901, 34, 2174–2185.

Chinchilla R; Nájera C Recent Advances in Sonogashira Reactions. Chem. Soc. Rev 2011, 40, 5084–5121. PubMed

Lafferentz L; Eberhardt V; Dri C; Africh C; Comelli G; Esch F; Hecht S; Grill L Controlling on-Surface Polymerization by Hierarchical and Substrate-Directed Growth. Nat. Chem 2012, 4, 215–220. PubMed

Grill L; Dyer M; Lafferentz L; Persson M; Peters MV; Hecht S Nano-Architectures by Covalent Assembly of Molecular Building Blocks. Nat. Nanotechnol 2007, 2, 687–691. PubMed

Dresselhaus MS; Jorio A; Hofmann M; Dresselhaus G; Saito R Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 2010, 10, 751–758. PubMed

Jankovsky O; Simek P; Klimova K; Sedmidubsky D; Matejkova S; Pumera M; Sofer Z Towards Graphene Bromide: Bromination of Graphite Oxide. Nanoscale 2014, 6, 6065–6074. PubMed

Bulusheva LG; Okotrub AV; Flahaut E; Asanov IP; Gevko PN; Koroteev VO; Fedoseeva YV; Yaya A; Ewels CP Bromination of Double-Walled Carbon Nanotubes. Chem. Mater 2012, 24, 2708–2715.

Hines D; Rümmeli MH; Adebimpe D; Akins DL High-Yield Photolytic Generation of Brominated Single-Walled Carbon Nanotubes and Their Application for Gas Sensing. Chem. Commun 2014, 50, 11568–11571. PubMed

Ikeda Y; Saito T; Kusakabe K; Morooka S; Maeda H; Taniguchi Y; Fujiwara Y Halogenation and Butylation of Diamond Surfaces by Reactions in Organic Solvents. Diamond Relat. Mater 1998, 7, 830–834.

Raymakers J; Haenen K; Maes W Diamond Surface Functionalization: From Gemstone to Photoelectrochemical Applications. Journal of Materials Chemistry C 2019, 7, 10134–10165.

Zhang B; Yan J; Shang Y; Wang Z Synthesis of Fluorescent Micro- and Mesoporous Polyaminals for Detection of Toxic Pesticides. Macromolecules 2018, 51, 1769–1776.

Field J The Properties of Diamond; Academic Press, 1979.

Lee JY; Kang MH First-Principles Study of the Cl and Br Adsorbed Si(100) Surfaces. Phys. Rev. B 2004, 69, 113307–1.

Bedzyk M; Materlik G X-Ray Standing Wave Analysis for Bromine Chemisorbed on Germanium. Surf. Sci 1985, 152, 10–16.

D’Evelyn MP; Yang YL; Cohen SM Adsorption, Desorption, and Decomposition of Hcl and Hbr on Ge(100) - Competitive Pairing and near-First-Order Desorption-Kinetics. J. Chem. Phys 1994, 101, 2463–2475.

Martin R; Heydorn PC; Alvaro M; Garcia H General Strategy for High-Density Covalent Functionalization of Diamond Nanoparticles Using Fenton Chemistry. Chem. Mater 2009, 21, 4505–4514.

Mamin HJ; Kim M; Sherwood MH; Rettner CT; Ohno K; Awschalom DD; Rugar D Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor. Science 2013, 339, 557–560. PubMed

Staudacher T; Raatz N; Pezzagna S; Meijer J; Reinhard F; Meriles CA; Wrachtrup J Probing Molecular Dynamics at the Nanoscale Via an Individual Paramagnetic Centre. Nat. Commun 2015, 6, 8527. PubMed PMC

Karaveli S; Gaathon O; Wolcott A; Sakakibara R; Shemesh OA; Peterka DS; Boyden ES; Owen JS; Yuste R; Englund D Modulation of Nitrogen Vacancy Charge State and Fluorescence in Nanodiamonds Using Electrochemical Potential. Proc. Natl. Acad. Sci. U.S.A 2016, 113, 3938–3943. PubMed PMC

de Theije FK; Reedijk MF; Arsic J; van Enckevort WJP; Vlieg E Atomic Structure of Diamond {111} Surfaces Etched in Oxygen Water Vapor. Phys. Rev. B 2001, 64, No. 085403.

Wolcott A; Schiros T; Trusheim ME; Chen EH; Nordlund D; Diaz RE; Gaathon O; Englund D; Owen JS Surface Structure of Aerobically Oxidized Diamond Nanocrystals. J. Phys. Chem. C 2014, 118, 26695–26702. PubMed PMC

Kono S; et al. Carbon 1s X-Ray Photoelectron Spectra of Realistic Samples of Hydrogen-Terminated and Oxygen-Terminated Cvd Diamond (111) and (001). Diamond Relat. Mater 2019, 93, 105–130.

Wang XF; Ruslinda AR; Ishiyama Y; Ishii Y; Kawarada H Higher Coverage of Carboxylic Acid Groups on Oxidized Single Crystal Diamond (001). Diamond Relat. Mater 2011, 20, 1319–1324.

Loh KP; Xie XN; Yang SW; Zheng JC Oxygen Adsorption on (111)-Oriented Diamond: A Study with Ultraviolet Photoelectron Spectroscopy, Temperature-Programmed Desorption, and Periodic Density Functional Theory. J. Phys. Chem. B 2002, 106, 5230–5240.

de Theije FK; van Veenendaal E; van Enckevort WJP; Vlieg E Oxidative Etching of Cleaved Synthetic Diamond {111} Surfaces. Surf. Sci 2001, 492, 91–105.

Chang YR; et al. Mass Production and Dynamic Imaging of Fluorescent Nanodiamonds. Nat. Nanotechnol 2008, 3, 284–288. PubMed

Scholze A; Schmidt WG; Bechstedt F Structure of the Diamond (111) Surface: Single-Dangling-Bond Versus Triple-Dangling-Bond Face. Phys. Rev. B 1996, 53, 13725–13733. PubMed

Ramaseshan S The Cleavage Properties of Diamond. Proc. Indian Acad. Sci. A 1946, 24, 114.

Telling RH; Pickard CJ; Payne MC; Field JE Theoretical Strength and Cleavage of Diamond. Phys. Rev. Lett 2000, 84, 5160–5163. PubMed

Rehor I; Cigler P Precise Estimation of Hpht Nanodiamond Size Distribution Based on Transmission Electron Microscopy Image Analysis. Diamond Relat. Mater 2014, 46, 21–24.

Mochalin VN; Shenderova O; Ho D; Gogotsi Y The Properties and Applications of Nanodiamonds. Nat. Nanotechnol 2012, 7, 11–23. PubMed

Costa GCC; Shenderova O; Mochalin V; Gogotsi Y; Navrotsky A Thermochemistry of Nanodiamond Terminated by Oxygen Containing Functional Groups. Carbon 2014, 80, 544–550.

Krueger A; Lang D Functionality Is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. Mater 2012, 22, 890–906.

Osswald S; Yushin G; Mochalin V; Kucheyev SO; Gogotsi Y Control of Sp(2)/Sp(3) Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. J. Am. Chem. Soc 2006, 128, 11635–11642. PubMed

Osswald S; Mochalin VN; Havel M; Yushin G; Gogotsi Y Phonon Confinement Effects in the Raman Spectrum of Nanodiamond. Phys. Rev. B 2009, 80, No. 075419.

Stehlik S; et al. Size and Purity Control of Hpht Nanodiamonds Down to 1 Nm. J. Phys. Chem. C Nanomater Interfaces 2015, 119, 27708–27720. PubMed PMC

Stehlik S; et al. Size Effects on Surface Chemistry and Raman Spectra of Sub-5 Nm Oxidized High-Pressure High-Temperature and Detonation Nanodiamonds. J. Phys. Chem. C 2021, 125, 5647–5669.

Borodich FM; Korach CS; Keer LM Modeling the Tribochemical Aspects of Friction and Gradual Wear of Diamond-Like Carbon Films. Journal of Applied Mechanics 2007, 74, 23–30.

Kruger A; Liang YJ; Jarre G; Stegk J Surface Functionalisation of Detonation Diamond Suitable for Biological Applications. J. Mater. Chem 2006, 16, 2322–2328.

Chang BM; Lin HH; Su LJ; Lin WD; Lin RJ; Tzeng YK; Lee RT; Lee YC; Yu AL; Chang HC Highly Fluorescent Nanodiamonds Protein-Functionalized for Cell Labeling and Targeting. Adv. Funct. Mater 2013, 23, 5737–5745.

Nguyen TTB; Chang HC; Wu VWK Adsorption and Hydrolytic Activity of Lysozyme on Diamond Nanocrystallites. Diamond Relat. Mater 2007, 16, 872–876.

Bumb A; Sarkar SK; Billington N; Brechbiel MW; Neuman KC Silica Encapsulation of Fluorescent Nanodiamonds for Colloidal Stability and Facile Surface Functionalization. J. Am. Chem. Soc 2013, 135, 7815–7818. PubMed PMC

Rehor I; et al. Fluorescent Nanodiamonds Embedded in Biocompatible Translucent Shells. Small 2014, 10, 1106–1115. PubMed PMC

Rehor I; et al. Plasmonic Nanodiamonds: Targeted Core-Shell Type Nanoparticles for Cancer Cell Thermoablation. Adv. Healthcare Mater 2015, 4, 460–468. PubMed PMC

Vavra J; Rehor I; Rendler T; Jani M; Bednar J; Baksh MM; Zappe A; Wrachtrup J; Cigler P Supported Lipid Bilayers on Fluorescent Nanodiamonds: A Structurally Defined and Versatile Coating for Bioapplications. Adv. Funct. Mater 2018, 28, 1803406.

Stacey A; et al. Nitrogen Terminated Diamond. Advanced Materials Interfaces 2015, 2, 1500079.

Sotowa K-I; Amamoto T; Sobana A; Kusakabe K; Imato T Effect of Treatment Temperature on the Amination of Chlorinated Diamond. Diamond Relat. Mater 2004, 13, 145–150.

Zhu D; Bandy JA; Li S; Hamers RJ Amino-Terminated Diamond Surfaces: Photoelectron Emission and Photocatalytic Properties. Surf. Sci 2016, 650, 295–301.

Jirasek V; Cech J; Kozak H; Artemenko A; Cernak M; Kromka A Plasma Treatment of Detonation and Hpht Nano-diamonds in Diffuse Coplanar Surface Barrier Discharge in H-2/N-2 Flow. Physica Status Solidi a-Applications and Materials Science 2016, 213, 2680–2686.

Simon N; Charrier G; Goncalves AM; Aureau D; Gautier P; Ndjeri M; Etcheberry A Direct Amination of Diamond Surfaces by Electroless Treatment in Liquid Ammonia Solution. Electrochem. Commun 2014, 42, 17–20.

Zhu D; Zhang LH; Ruther RE; Hamers RJ Photo-Illuminated Diamond as a Solid-State Source of Solvated Electrons in Water for Nitrogen Reduction. Nat. Mater 2013, 12, 836–841. PubMed

Tiwari AK; Goss JP; Briddon PR; Wright NG; Horsfall AB; Rayson MJ Bromine Functionalisation of Diamond: An Ab Initio Study. Physica Status Solidi a-Applications and Materials Science 2012, 209, 1703–1708.

Chu PM; Guenther FR; Rhoderick GC; Lafferty WJ The Nist Quantitative Infrared Database. J. Res. Natl. Inst. Stand. Technol 1999, 104, 59–81.

Ryan RG; Stacey A; O’Donnell KM; Ohshima T; Johnson BC; Hollenberg LCL; Mulvaney P; Simpson DA Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds. ACS Appl. Mater. Interfaces 2018, 10, 13143–13149. PubMed

Williamson A Xlv. Theory of Ætherification. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1850, 37, 350–356.

Johnstone RAW; Rose ME Rapid, Simple, and Mild Procedure for Alkylation of Phenols, Alcohols, Amides and Acids. Tetrahedron 1979, 35, 2169–2173.

Smykalla L; Shukrynau P; Korb M; Lang H; Hietschold M Surface-Confined 2d Polymerization of a Brominated Copper-Tetraphenylporphyrin on Au(111). Nanoscale 2015, 7, 4234–4241. PubMed

Tiwari AK; Goss JP; Briddon PR; Wright NG; Horsfall AB; Jones R; Pinto H; Rayson MJ Calculated Electron Affinity and Stability of Halogen-Terminated Diamond. Phys. Rev. B 2011, 84, 245305.

Larsson K; Lunell S Stability of Halogen-Terminated Diamond (111) Surfaces. J. Phys. Chem. A 1997, 101, 76–82.

Olah GA; Liang G; Babiak KA; Ford TM; Goff DL; Morgan TK; Murray RK Structure of Cyclopropylcarbinyl and Cyclobutyl Cations - 8,9-Dehydro-2-Adamantyl and 2,5-Dehydro-4-Protoadamantyl Cations. J. Am. Chem. Soc 1978, 100, 1494–1500.

Marton D; Boyd KJ; Albayati AH; Todorov SS; Rabalais JW Carbon Nitride Deposited Using Energetic Species - a 2-Phase System. Phys. Rev. Lett 1994, 73, 118–121. PubMed

Stöhr J NEXAFS Spectroscopy; Springer-Verlag: Berlin, 1992; p 404.

Morar JF; Himpsel FJ; Hollinger G; Hughes G; Jordan JL Observation of a C-1s Core Exciton in Diamond. Phys. Rev. Lett 1985, 54, 1960–1963. PubMed

Himpsel FJ; van der Veen JF; Eastman DE Experimental Bulk Energy Bands for Diamond Using $H\Ensuremath{\Nu}$-Dependent Photoemission. Phys. Rev. B 1980, 22, 1967–1971.

Zubavichus Y; Shaporenko A; Korolkov V; Grunze M; Zharnikov M X-Ray Absorption Spectroscopy of the Nucleotide Bases at the Carbon, Nitrogen, and Oxygen K-Edges. J. Phys. Chem. B 2008, 112, 13711–13716. PubMed

Leinweber P; Kruse J; Walley FL; Gillespie A; Eckhardt K-U; Blyth RIR; Regier T Nitrogen K-Edge Xanes - an Overview of Reference Compounds Used to Identify ‘Unknown’ Organic Nitrogen in Environmental Samples. Journal of Synchrotron Radiation 2007, 14, 500–511. PubMed

Bottcher S; Vita H; Weser M; Bisti F; Dedkov YS; Horn K Adsorption of Water and Ammonia on Graphene: Evidence for Chemisorption from X-Ray Absorption Spectra. J. Phys. Chem. Lett 2017, 8, 3668–3672. PubMed

Reinholdt P; Vidal ML; Kongsted J; Iannuzzi M; Coriani S; Odelius M Nitrogen K-Edge X-Ray Absorption Spectra of Ammonium and Ammonia in Water Solution: Assessing the Performance of Polarizable Embedding Coupled Cluster Methods. J. Phys. Chem. Lett 2021, 12, 8865–8871. PubMed PMC

Ekimova M; Quevedo W; Szyc Ł; Iannuzzi M; Wernet P; Odelius M; Nibbering ETJ Aqueous Solvation of Ammonia and Ammonium: Probing Hydrogen Bond Motifs with Ft-Ir and Soft X-Ray Spectroscopy. J. Am. Chem. Soc 2017, 139, 12773–12783. PubMed

Titus CJ; et al. L-Edge Spectroscopy of Dilute, Radiation-Sensitive Systems Using a Transition-Edge-Sensor Array. J. Chem. Phys 2017, 147, 214201. PubMed PMC

Lee SJ; et al. Soft X-Ray Spectroscopy with Transition-Edge Sensors at Stanford Synchrotron Radiation Lightsource Beamline 10–1. Rev. Sci. Instrum 2019, 90, 113101. PubMed

Ma Y; Skytt P; Wassdahl N; Glans P; Guo J; Nordgren J Core Excitons and Vibronic Coupling in Diamond and Graphite. Phys. Rev. Lett 1993, 71, 3725–3728. PubMed

Weinhardt L; Weigand M; Fuchs O; Bar M; Blum M; Denlinger JD; Yang W; Umbach E; Heske C Nuclear Dynamics in the Core-Excited State of Aqueous Ammonia Probed by Resonant Inelastic Soft X-Ray Scattering. Phys. Rev. B 2011, 84, 104202.

Wang X; Hou Z; Ikeda T; Oshima M; Kakimoto M -a.; Terakura, K. Theoretical Characterization of X-Ray Absorption, Emission, and Photoelectron Spectra of Nitrogen Doped Along Graphene Edges. J. Phys. Chem. A 2013, 117, 579–589. PubMed

Weinhardt L; et al. Local Electronic Structure of the Peptide Bond Probed by Resonant Inelastic Soft X-Ray Scattering. Phys. Chem. Chem. Phys 2019, 21, 13207–13214. PubMed

Pandey KC New Dimerized-Chain Model for the Reconstruction of the Diamond (111)-(2 × 1) Surface. Phys. Rev. B 1982, 25, 4338–4341.

Sonogashira K; Tohda Y; Hagihara N Convenient Synthesis of Acetylenes - Catalytic Substitutions of Acetylenic Hydrogen with Bromoalkenes, Iodoarenes, and Bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470.

Liu WB; Li L; Li CJ Empowering a Transition-Metal-Free Coupling between Alkyne and Alkyl Iodide with Light in Water. Nat. Commun 2015, 6, 6526. PubMed

Weinhardt L; et al. Electron-Hole Correlation Effects in Core-Level Spectroscopy Probed by the Resonant Inelastic Soft X-Ray Scattering Map of C60. J. Chem. Phys 2011, 135, 104705. PubMed

Müller TE; Hultzsch KC; Yus M; Foubelo F; Tada M Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chem. Rev 2008, 108, 3795–3892. PubMed

Shearer J; Callan PE; Masitas CA; Grapperhaus CA Influence of Sequential Thiolate Oxidation on a Nitrile Hydratase Mimic Probed by Multiedge X-Ray Absorption Spectroscopy. Inorg. Chem 2012, 51, 6032–6045. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...