Size and Purity Control of HPHT Nanodiamonds down to 1 nm
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26691647
PubMed Central
PMC4677353
DOI
10.1021/acs.jpcc.5b05259
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized. Moreover we provide experimental evidence of diamond stability down to 1 nm. Controlled annealing at 450 °C in air leads to efficient purification from the nondiamond carbon (shells and dots), as evidenced by X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and scanning transmission electron microscopy. Annealing at 500 °C promotes, besides of purification, also size reduction of nanodiamonds down to ∼1 nm. Comparably short (1 h) centrifugation of the nanodiamonds aqueous colloidal solution ensures separation of the sub-10 nm fraction. Calculations show that an asymmetry of Raman diamond peak of sub-10 nm HPHT nanodiamonds can be well explained by modified phonon confinement model when the actual particle size distribution is taken into account. In contrast, larger Raman peak asymmetry commonly observed in Raman spectra of detonation nanodiamonds is mainly attributed to defects rather than to the phonon confinement. Thus, the obtained characteristics reflect high material quality including nanoscale effects in sub-10 nm HPHT nanodiamonds prepared by the presented method.
Zobrazit více v PubMed
Shenderova O. A.; Zhirnov V. V.; Brenner D. W. Carbon Nanostructures. Crit. Rev. Solid State Mater. Sci. 2002, 27, 227–35610.1080/10408430208500497. DOI
Hui Y. Y.; Cheng C.-L.; Chang H.-C. Nanodiamonds for Optical Bioimaging. J. Phys. D: Appl. Phys. 2010, 43, 374021.10.1088/0022-3727/43/37/374021. DOI
Balasubramanian G.; Lazariev A.; Arumugam S. R.; Duan D. Nitrogen-Vacancy Color Center in Diamond - Emerging Nanoscale Applications in Bioimaging and Biosensing. Curr. Opin. Chem. Biol. 2014, 20, 69–7710.1016/j.cbpa.2014.04.014. PubMed DOI
Schrand A. M.; Hens S. A. C.; Shenderova O. A. Nanodiamond Particles: Properties and Perspectives for Bioapplications. Crit. Rev. Solid State Mater. Sci. 2009, 34, 18–7410.1080/10408430902831987. DOI
Tisler J.; Balasubramanian G.; Naydenov B.; Kolesov R.; Grotz B.; Reuter R.; Boudou J.; Curmi P. A.; Sennour M.; Thorel A.; et al. Fluorescence and Spin Properties of Defects in Single Digit Nanodiamonds. ACS Nano 2009, 3, 1959–196510.1021/nn9003617. PubMed DOI
Mochalin V. N.; Shenderova O.; Ho D.; Gogotsi Y. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–2310.1038/nnano.2011.209. PubMed DOI
Stacey A.; Karle T. J.; McGuinness L. P.; Gibson B. C.; Ganesan K.; Tomljenovic-Hanic S.; Greentree A. D.; Hoffman A.; Beausoleil R. G.; Prawer S. Depletion of Nitrogen-vacancy Color Centers in Diamond via Hydrogen Passivation. Appl. Phys. Lett. 2012, 100, 071902.10.1063/1.3684612. DOI
Petráková V.; Taylor A.; Kratochvílová I.; Fendrych F.; Vacík J.; Kučka J.; Štursa J.; Cígler P.; Ledvina M.; Fišerová A.; et al. Luminescence of Nanodiamond Driven by Atomic Functionalization: Towards Novel Detection Principles. Adv. Funct. Mater. 2012, 22, 812–81910.1002/adfm.201101936. DOI
Fu K.-M. C.; Santori C.; Barclay P. E.; Beausoleil R. G. Conversion of Neutral Nitrogen-vacancy Centers to Negatively Charged Nitrogen-vacancy Centers Through Selective Oxidation. Appl. Phys. Lett. 2010, 96, 121907.10.1063/1.3364135. DOI
Smith B. R.; Gruber D.; Plakhotnik T. The Effects of Surface Oxidation on Luminescence of Nano Diamonds. Diamond Relat. Mater. 2010, 19, 314–31810.1016/j.diamond.2009.12.009. DOI
Cui S.; Hu E. L. Increased Negatively Charged Nitrogen-vacancy Centers in Fluorinated Diamond. Appl. Phys. Lett. 2013, 103, 051603.10.1063/1.4817651. DOI
Krueger A.; Lang D. Functionality is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. Mater. 2012, 22, 890–90610.1002/adfm.201102670. DOI
Dolmatov V. Yu. Detonation-synthesis Nanodiamonds: Synthesis, Structure, Properties and Applications. Russ. Chem. Rev. 2007, 76, 339–36010.1070/RC2007v076n04ABEH003643. DOI
Pichot V.; Comet M.; Risse B.; Spitzer D. Detonation of Nanosized Explosive: New Mechanistic Model for Nanodiamond Formation. Diamond Relat. Mater. 2015, 54, 59–6310.1016/j.diamond.2014.09.013. DOI
Pichot V.; Risse B.; Schnell F.; Mory J.; Spitzer D. Understanding Ultrafine Nanodiamond Formation Using Nanostructured Explosives. Sci. Rep. 2012, 3, 2159.10.1038/srep02159. PubMed DOI PMC
Ozawa M.; Inaguma M.; Takahashi M.; Kataoka F.; Krüger A.; Osawa E. Preparation and Behavior of Brownish, Clear Nanodiamond Colloids. Adv. Mater. 2007, 19, 1201–120610.1002/adma.200601452. DOI
Baidakova M. V.Methods of Characterization and Models of Nanodiamond Particles. In Detonation Nanodiamonds: Science and Applications; Vul A., Shenderova O., Eds.; CRC Press: Boca Raton, FL, 2014.
Boudou J.-P.; Tisler J.; Reuter R.; Thorel A.; Curmi P. A.; Jelezko F.; Wrachtrup J. Fluorescent Nanodiamonds Derived from HPHT with a Size of Less than 10 nm. Diamond Relat. Mater. 2013, 37, 80–8610.1016/j.diamond.2013.05.006. DOI
Schirhagl R.; Chang K.; Loretz M.; Degen Ch. L. Nitrogen-Vacancy Centersin Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 2014, 65, 83–10510.1146/annurev-physchem-040513-103659. PubMed DOI
Aharonovich I.; Castelletto S.; Simpson D. A.; Su C.-H.; Greentree A. D.; Prawer S. Diamond-based Single-photon Emitters. Rep. Prog. Phys. 2011, 74, 076501.10.1088/0034-4885/74/7/076501. DOI
Mohan N.; Tzeng Y.; Yang L.; Chen Y.; Hui Y. Y.; Fang C.; Chang H. Sub-20-nm Fluorescent Nanodiamonds as Photostable Biolabels and Fluorescence Resonance Energy Transfer Donors. Adv. Mater. 2010, 22, 843–84710.1002/adma.200901596. PubMed DOI
Beranova J.; Seydlova G.; Kozak H.; Benada O.; Fiser R.; Artemenko A.; Konopasek I.; Kromka A. Sensitivity of Bacteria to Diamond Nanoparticles of Various Size Differs in Gram-positive and Gram-negative Cells. FEMS Microbiol. Lett. 2014, 351, 179–18610.1111/1574-6968.12373. PubMed DOI
Chu Z.; Zhang S.; Zhang B.; Zhang Ch.; Fang; Ch-Y; Rehor I.; Cigler P.; Chang H-Ch.; Lin G.; Liu R.; Li Q.; et al. Unambiguous Observation of Shape Effects on Cellular Fate of Nanoparticles. Sci. Rep. 2014, 4, 4495.10.1038/srep04495. PubMed DOI PMC
Rehor I.; Cigler P. Precise Estimation of HPHT Nanodiamond Size Distribution Based on Transmission Electron Microscopy Image Analysis. Diamond Relat. Mater. 2014, 46, 21–2410.1016/j.diamond.2014.04.002. DOI
Morita Y.; Takimoto T.; Yamanaka H.; Kumekawa K.; Morino S.; Aonuma S.; Kimura T.; Komatsu N. A Facile and Scalable Process for Size- Controllable Separation of Nanodiamond Particles as Small as 4 nm. Small 2008, 4, 2154–215710.1002/smll.200800944. PubMed DOI
Osswald S.; Yushin G.; Mochalin V.; Kucheyev S. O.; Gogotsi Y. Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. J. Am. Chem. Soc. 2006, 128, 11635–1164210.1021/ja063303n. PubMed DOI
Pichot V.; Comet M.; Fousson E.; Baras C.; Senger A.; Le Normand F.; Spitzer D. An Efficient Purification Method for Detonation Nanodiamonds. Diamond Relat. Mater. 2008, 17, 13–2210.1016/j.diamond.2007.09.011. DOI
Shenderova O.; Petrov I.; Walsh J.; Grichko V.; Grishko V.; Tyler T.; Cunningham G. Modification of Detonation Nanodiamonds By heat Treatment in Air. Diamond Relat. Mater. 2006, 15, 1799–180310.1016/j.diamond.2006.08.032. DOI
Cunningham G.; Panich A. M.; Shames A. I.; Petrov I.; Shenderova O. Ozone-modified Detonation Nanodiamonds. Diamond Relat. Mater. 2008, 17, 650–65410.1016/j.diamond.2007.10.036. DOI
Shenderova O.; Koscheev A.; Zaripov N.; Petrov I.; Skryabin Y.; Detkov P.; Turner S.; Van Tendeloo G. Surface Chemistry and Properties of Ozone-Purified Detonation Nanodiamonds. J. Phys. Chem. C 2011, 115, 9827–983710.1021/jp1102466. DOI
Kozak H.; Remes Z.; Houdkova J.; Stehlik S.; Kromka A.; Rezek B. Chemical Modifications and Stability of Diamond Nanoparticles Resolved by Infrared Spectroscopy and Kelvin Force Microscopy. J. Nanopart. Res. 2013, 15, 1568.10.1007/s11051-013-1568-7. DOI
Ondič L.; Dohnalová K.; Pelant I.; Žídek K.; De Boer W. D. A. M. Data Processing Correction of the Irising Effect of a Fast-gating Intensified Charge-coupled Device on Laser-pulse-excited Luminescence Spectra. Rev. Sci. Instrum. 2010, 81, 063104.10.1063/1.3431536. PubMed DOI
Lesiak B.; Zemek J.; Jiricek P.; Stobinski L. Temperature Modification of Oxidized Multiwall Carbon Nanotubes Studied by Electron Spectroscopy Methods. Phys. Status Solidi B 2009, 246, 2645–264910.1002/pssb.200982268. DOI
Haerle R.; Riedo E.; Pasquarello A.; Baldereschi A. sp(2)/sp(3) Hybridization Ratio in Amorphous Carbon from C 1s Core-level Shifts: X-ray Photoelectron Spectroscopy and First-principles Calculation. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 65, 045101–04510910.1103/PhysRevB.65.045101. DOI
Osswald S.; Havel M.; Mochalin V.; Yushin G.; Gogotsi Y. Increase of Nanodiamond Crystal Size by Selective Oxidation. Diamond Relat. Mater. 2008, 17, 1122–112610.1016/j.diamond.2008.01.102. DOI
Popov C.; Kulisch W.; Bliznakov S.; Mednikarov B.; Spasov G.; Pirov J.; Jelinek M.; Kocourek T.; Zemek J. Characterization of the Bonding Structure of Nanocrystalline Diamond and Amorphous Carbon Films Prepared by Plasma Assisted Techniques. Appl. Phys. A: Mater. Sci. Process. 2007, 89, 209–21210.1007/s00339-007-4092-8. DOI
Beamson G.; Briggs D.. High Energy XPS of Organic Polymers: The Scienta ESCA 300 Database; Wiley: Chichester, U.K., 1992.
Xiao J.; Liu P.; Li L.; Yang G. Fluorescence Origin of Nanodiamonds. J. Phys. Chem. C 2015, 119, 2239–224810.1021/jp512188x. DOI
Solin A. S.; Ramdas A. K. Raman Spectrum of Diamond. Phys. Rev. B 1970, 1, 1687.10.1103/PhysRevB.1.1687. DOI
Chen P.; Huang F.; Yun S. Structural Analysis of Dynamically Synthesized Diamonds. Mater. Res. Bull. 2004, 39, 1589–159710.1016/j.materresbull.2004.05.009. DOI
Yoshikawa M.; Mori Y.; Obata H.; Maegawa M.; Katagiri G.; Ishida H.; Ishitani A. Raman Scattering from Nanometersized Diamond. Appl. Phys. Lett. 1995, 67, 694.10.1063/1.115206. DOI
Mermoux M.; Crisci A.; Petit T.; Girard H. A.; Arnault J-Ch. Surface Modifications of Detonation Nanodiamonds Probed by Multi-Wavelength Raman Spectroscopy. J. Phys. Chem. C 2014, 118, 23415–2342510.1021/jp507377z. DOI
Mochalin V.; Osswald S.; Gogotsi Y. Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders. Chem. Mater. 2009, 21, 273–27910.1021/cm802057q. DOI
Williams O. A.; Hees J.; Dieker Ch.; Jäger W.; Kirste L.; Nebel Ch. E. Size-Dependent Reactivity of Diamond Nanoparticles. ACS Nano 2010, 4, 4824–483010.1021/nn100748k. PubMed DOI
Barnard A. S.; Russo S. P.; Snook I. K. Coexistence of Bucky Diamond with Nanodiamond and Fullerene Carbon Phases. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 073406.10.1103/PhysRevB.68.073406. DOI
Barnard A. S.; Russo S. P.; Snook I. K. Size Dependent Phase Stability of Carbon Nanoparticles: Nanodiamond versus Fullerenes. J. Chem. Phys. 2003, 118, 5094–509710.1063/1.1545450. DOI
Barnard A. S.; Sternberg M. Crystallinity and Surface Electrostatics of Diamond Nanocrystals. J. Mater. Chem. 2007, 17, 4811–481910.1039/b710189a. DOI
Kaviani M.; Deák P.; Aradi B.; Köhler T.; Frauenheim T. How Small Nanodiamonds Can Be? MD Study of the Stability Against Graphitization. Diamond Relat. Mater. 2013, 33, 78–8410.1016/j.diamond.2013.01.002. DOI
Heyer S.; Janssen W.; Turner S.; Lu Y.-G.; Yeap W. S.; Verbeeck J.; Haenen K.; Krueger A. Toward Deep Blue Nano Hope Diamonds: Heavily Boron-Doped Diamond Nanoparticles. ACS Nano 2014, 8, 5757–576410.1021/nn500573x. PubMed DOI
Butenko Yu. V.; Kuznetsov V. L.; Chuvilin A. L.; Kolomiichuk V. N.; Stankus S. V.; Khairulin R. A.; Segall B. Kinetics of the Graphitization of Dispersed Diamonds at “Low” Temperatures. J. Appl. Phys. 2000, 88, 4380.10.1063/1.1289791. DOI
Pantea C.; Qian J.; Voronin G. A.; Zerda T. W. High Pressure Study of Graphitization of Diamond Crystals. J. Appl. Phys. 2002, 91, 1957.10.1063/1.1433181. DOI
Gogotsi Y. G.; Kailer A.; Nickel K. G. Transformation of Diamond to Graphite. Nature 1999, 401, 663–66410.1038/44323. DOI
Cumpson P. J.; Seah M. P. Elastic Scattering Corrections in AES and XPS. II. Estimating Attenuation Lengths and Conditions Required for their Valid Use in Overlayer/Substrate Experiments. Surf. Interface Anal. 1997, 25, 430–44610.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.3.CO;2-Z. DOI
Zhu S.; Zhang J.; Tang S.; Qiao C.; Wang L.; Wang H.; Liu X.; Li B.; Li Y.; Yu W.; et al. Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications. Adv. Funct. Mater. 2012, 22, 4732–474010.1002/adfm.201201499. DOI
Xiao J.; Liu P.; Li L.; Yang G. Fluorescence Origin of Nanodiamonds. J. Phys. Chem. C 2015, 119, 2239–224810.1021/jp512188x. DOI
Khong Y. L.; Collins A. T.; Allers L. Luminescence Decay Time Studies and Time-resolved Cathodoluminescence Spectroscopy of CVD Diamond. Diamond Relat. Mater. 1994, 3, 1023–102710.1016/0925-9635(94)90112-0. DOI
Partlow W. D.; Ruan J.; Witkowski R. E.; Choyke W. J.; Knight D. S. Cryogenic Cathodoluminescence of Plasma-deposited Polycrystalline Diamond Coatings. J. Appl. Phys. 1990, 67, 7019.10.1063/1.345048. DOI
Mykhaylyk O. O.; Solonin Y. M.; Batchelder D. N.; Brydson R. Transformation of Nanodiamond into Carbon Onions: a Comparative Study by High Resolution Transmission Electron Microscopy, Electron Energy-loss Spectroscopy, X-ray Diffraction, Small-angle X-ray Scattering, and Ultraviolet Raman spectroscopy. J. Appl. Phys. 2005, 97, 074302.10.1063/1.1868054. DOI
Aleksenskii A. E.; Osipov V. Y.; Vul A. Y.; Ber B. Y.; Smirnov A. B.; Melekhin V. G.; Adriaenssens G. J.; Iakoubovskii K. Optical Properties of Nanodiamond Layers. Phys. Solid State 2001, 43, 145–15010.1134/1.1340200. DOI
Ferrari A. C.; Robertson J. Raman Spectroscopy of Amorphous, Nanostructured, Diamond-like Carbon, and Nanodiamond. Philos. Trans. R. Soc., A 2004, 362, 2477–251210.1098/rsta.2004.1452. PubMed DOI
Pawlak R.; Glatzel T.; Pichot V.; Schmidlin L.; Kawai S.; Fremy S.; Spitzer D.; Meyer E. Local Detection of Nitrogen-Vacancy Centers in a Nanodiamond Monolayer. Nano Lett. 2013, 13, 5803–580710.1021/nl402243s. PubMed DOI
Korobov M. V.; Avramenko N. V.; Bogachev A. G.; Rozhkova N. N.; Osawa E. Nanophase of Water in Nano-Diamond Gel. J. Phys. Chem. C 2007, 111, 7330–733410.1021/jp0683420. DOI
Faraci G.; Gibilisco S.; Pennisi A. R. Quantum Confinement and Thermal Effects on the Raman Spectra of Si Nanocrystals. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 193410.10.1103/PhysRevB.80.193410. DOI
Duan Y.; Kong J. F.; Shen W. Z. Raman Investigation of Silicon Nanocrystals: Quantum Confinement and Laser-induced Thermal Effects. J. Raman Spectrosc. 2012, 43, 756–76010.1002/jrs.3094. DOI
Bersani D.; Lottici P. P.; Ding X.-Z. Phonon Confinement Effects in the Raman Scattering by TiO2 Nanocrystals. Appl. Phys. Lett. 1998, 72, 73.10.1063/1.120648. DOI
Calizo I.; Alim K. A.; Fonoberov V. A.; Krishnakumar S.; Shamsa M.; Balandin A. A.; Kurtz R. Micro-Raman Spectroscopic Characterization of ZnO Quantum Dots, Nanocrystals and Nanowires. Proc. of SPIE 2007, 6481, 64810N–210.1117/12.713648. DOI
Nemanich R. J.; Solin S. A.; Martin R. M. Light Scattering Study of Boron Nitride Microcrystals. Phys. Rev. B: Condens. Matter Mater. Phys. 1981, 23, 6348.10.1103/PhysRevB.23.6348. DOI
Richter H.; Wang Z. P.; Ley L. The One Phonon Raman Spectrum in Microcrystalline Silicon. Solid State Commun. 1981, 39, 625.10.1016/0038-1098(81)90337-9. DOI
Merkulov V. I.; Lannin J. S.; Munro C. H.; Asher S. A.; Veerasamy V. S.; Milne W. I. uv Studies of Tetrahedral Bonding in Diamond-like Amorphous Carbon. Phys. Rev. Lett. 1997, 78, 4869.10.1103/PhysRevLett.78.4869. DOI
Prawer S.; Nugent K. W.; Jamieson D. N.; Orwa J. O.; Bursill L. A.; Peng J. L. The Raman Spectrum of Nanocrystalline Diamond. Chem. Phys. Lett. 2000, 332, 93–9710.1016/S0009-2614(00)01236-7. DOI
Osswald S.; Mochalin V. N.; Havel M.; Yushin G.; Gogotsi Y. Phonon Confinement Effects in the Raman Spectrum of Nanodiamond. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 075419.10.1103/PhysRevB.80.075419. DOI
Iakoubovskii K.; Mitsuishi K.; Furuya K. High-resolution Electron Microscopy of Detonation Nanodiamond. Nanotechnology 2008, 19, 155705.10.1088/0957-4484/19/15/155705. PubMed DOI
Chaigneau M.; Picardi G.; Girard H. A.; Arnault J-Ch.; Ossikovski R. Laser Heating Versus Phonon Confinement Effect in the Raman Spectra of Diamond Nanoparticles. J. Nanopart. Res. 2012, 14, 955.10.1007/s11051-012-0955-9. DOI
Akahama Y.; Kawamura H. High-pressure Raman Spectroscopy of Diamond Anvils to 250 GPa: Method for Pressure Determination in the Multimegabar Pressure Range. J. Appl. Phys. 2004, 96, 3748.10.1063/1.1778482. DOI
Yur’ev G. S.; Dolmatov V. Yu. X Ray Diffraction Study of Detonation Nanodiamonds. Journal of Superhard Materials 2010, 32, 311–32810.3103/S1063457610050035. DOI
Vlasov I. I.; Shiryaev A. A.; Rendler T.; Steinert S.; Lee S.-Y.; Antonov D.; Vörös M.; Jelezko F.; Fisenko A. V.; Semjonova L. F.; et al. Molecular-Sized Fluorescent Nanodiamonds. Nat. Nanotechnol. 2014, 9, 54–5810.1038/nnano.2013.255. PubMed DOI
Wang C.; Kurtsiefer C.; Weinfurter H.; Burchard B. Single Photon Emission from SiV Centres in Diamond Produced by Ion Implantation. J. Phys. B: At., Mol. Opt. Phys. 2006, 39, 37–4110.1088/0953-4075/39/1/005. DOI
High-Yield Production of SiV-Doped Nanodiamonds for Spectroscopy and Sensing Applications
Absolute energy levels in nanodiamonds of different origins and surface chemistries
Nanodiamond surface chemistry controls assembly of polypyrrole and generation of photovoltage
Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films
Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study
High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution