Size and Purity Control of HPHT Nanodiamonds down to 1 nm

. 2015 Dec 10 ; 119 (49) : 27708-27720. [epub] 20150804

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26691647

High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized. Moreover we provide experimental evidence of diamond stability down to 1 nm. Controlled annealing at 450 °C in air leads to efficient purification from the nondiamond carbon (shells and dots), as evidenced by X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and scanning transmission electron microscopy. Annealing at 500 °C promotes, besides of purification, also size reduction of nanodiamonds down to ∼1 nm. Comparably short (1 h) centrifugation of the nanodiamonds aqueous colloidal solution ensures separation of the sub-10 nm fraction. Calculations show that an asymmetry of Raman diamond peak of sub-10 nm HPHT nanodiamonds can be well explained by modified phonon confinement model when the actual particle size distribution is taken into account. In contrast, larger Raman peak asymmetry commonly observed in Raman spectra of detonation nanodiamonds is mainly attributed to defects rather than to the phonon confinement. Thus, the obtained characteristics reflect high material quality including nanoscale effects in sub-10 nm HPHT nanodiamonds prepared by the presented method.

Zobrazit více v PubMed

Shenderova O. A.; Zhirnov V. V.; Brenner D. W. Carbon Nanostructures. Crit. Rev. Solid State Mater. Sci. 2002, 27, 227–35610.1080/10408430208500497. DOI

Hui Y. Y.; Cheng C.-L.; Chang H.-C. Nanodiamonds for Optical Bioimaging. J. Phys. D: Appl. Phys. 2010, 43, 374021.10.1088/0022-3727/43/37/374021. DOI

Balasubramanian G.; Lazariev A.; Arumugam S. R.; Duan D. Nitrogen-Vacancy Color Center in Diamond - Emerging Nanoscale Applications in Bioimaging and Biosensing. Curr. Opin. Chem. Biol. 2014, 20, 69–7710.1016/j.cbpa.2014.04.014. PubMed DOI

Schrand A. M.; Hens S. A. C.; Shenderova O. A. Nanodiamond Particles: Properties and Perspectives for Bioapplications. Crit. Rev. Solid State Mater. Sci. 2009, 34, 18–7410.1080/10408430902831987. DOI

Tisler J.; Balasubramanian G.; Naydenov B.; Kolesov R.; Grotz B.; Reuter R.; Boudou J.; Curmi P. A.; Sennour M.; Thorel A.; et al. Fluorescence and Spin Properties of Defects in Single Digit Nanodiamonds. ACS Nano 2009, 3, 1959–196510.1021/nn9003617. PubMed DOI

Mochalin V. N.; Shenderova O.; Ho D.; Gogotsi Y. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–2310.1038/nnano.2011.209. PubMed DOI

Stacey A.; Karle T. J.; McGuinness L. P.; Gibson B. C.; Ganesan K.; Tomljenovic-Hanic S.; Greentree A. D.; Hoffman A.; Beausoleil R. G.; Prawer S. Depletion of Nitrogen-vacancy Color Centers in Diamond via Hydrogen Passivation. Appl. Phys. Lett. 2012, 100, 071902.10.1063/1.3684612. DOI

Petráková V.; Taylor A.; Kratochvílová I.; Fendrych F.; Vacík J.; Kučka J.; Štursa J.; Cígler P.; Ledvina M.; Fišerová A.; et al. Luminescence of Nanodiamond Driven by Atomic Functionalization: Towards Novel Detection Principles. Adv. Funct. Mater. 2012, 22, 812–81910.1002/adfm.201101936. DOI

Fu K.-M. C.; Santori C.; Barclay P. E.; Beausoleil R. G. Conversion of Neutral Nitrogen-vacancy Centers to Negatively Charged Nitrogen-vacancy Centers Through Selective Oxidation. Appl. Phys. Lett. 2010, 96, 121907.10.1063/1.3364135. DOI

Smith B. R.; Gruber D.; Plakhotnik T. The Effects of Surface Oxidation on Luminescence of Nano Diamonds. Diamond Relat. Mater. 2010, 19, 314–31810.1016/j.diamond.2009.12.009. DOI

Cui S.; Hu E. L. Increased Negatively Charged Nitrogen-vacancy Centers in Fluorinated Diamond. Appl. Phys. Lett. 2013, 103, 051603.10.1063/1.4817651. DOI

Krueger A.; Lang D. Functionality is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. Mater. 2012, 22, 890–90610.1002/adfm.201102670. DOI

Dolmatov V. Yu. Detonation-synthesis Nanodiamonds: Synthesis, Structure, Properties and Applications. Russ. Chem. Rev. 2007, 76, 339–36010.1070/RC2007v076n04ABEH003643. DOI

Pichot V.; Comet M.; Risse B.; Spitzer D. Detonation of Nanosized Explosive: New Mechanistic Model for Nanodiamond Formation. Diamond Relat. Mater. 2015, 54, 59–6310.1016/j.diamond.2014.09.013. DOI

Pichot V.; Risse B.; Schnell F.; Mory J.; Spitzer D. Understanding Ultrafine Nanodiamond Formation Using Nanostructured Explosives. Sci. Rep. 2012, 3, 2159.10.1038/srep02159. PubMed DOI PMC

Ozawa M.; Inaguma M.; Takahashi M.; Kataoka F.; Krüger A.; Osawa E. Preparation and Behavior of Brownish, Clear Nanodiamond Colloids. Adv. Mater. 2007, 19, 1201–120610.1002/adma.200601452. DOI

Baidakova M. V.Methods of Characterization and Models of Nanodiamond Particles. In Detonation Nanodiamonds: Science and Applications; Vul A., Shenderova O., Eds.; CRC Press: Boca Raton, FL, 2014.

Boudou J.-P.; Tisler J.; Reuter R.; Thorel A.; Curmi P. A.; Jelezko F.; Wrachtrup J. Fluorescent Nanodiamonds Derived from HPHT with a Size of Less than 10 nm. Diamond Relat. Mater. 2013, 37, 80–8610.1016/j.diamond.2013.05.006. DOI

Schirhagl R.; Chang K.; Loretz M.; Degen Ch. L. Nitrogen-Vacancy Centersin Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 2014, 65, 83–10510.1146/annurev-physchem-040513-103659. PubMed DOI

Aharonovich I.; Castelletto S.; Simpson D. A.; Su C.-H.; Greentree A. D.; Prawer S. Diamond-based Single-photon Emitters. Rep. Prog. Phys. 2011, 74, 076501.10.1088/0034-4885/74/7/076501. DOI

Mohan N.; Tzeng Y.; Yang L.; Chen Y.; Hui Y. Y.; Fang C.; Chang H. Sub-20-nm Fluorescent Nanodiamonds as Photostable Biolabels and Fluorescence Resonance Energy Transfer Donors. Adv. Mater. 2010, 22, 843–84710.1002/adma.200901596. PubMed DOI

Beranova J.; Seydlova G.; Kozak H.; Benada O.; Fiser R.; Artemenko A.; Konopasek I.; Kromka A. Sensitivity of Bacteria to Diamond Nanoparticles of Various Size Differs in Gram-positive and Gram-negative Cells. FEMS Microbiol. Lett. 2014, 351, 179–18610.1111/1574-6968.12373. PubMed DOI

Chu Z.; Zhang S.; Zhang B.; Zhang Ch.; Fang; Ch-Y; Rehor I.; Cigler P.; Chang H-Ch.; Lin G.; Liu R.; Li Q.; et al. Unambiguous Observation of Shape Effects on Cellular Fate of Nanoparticles. Sci. Rep. 2014, 4, 4495.10.1038/srep04495. PubMed DOI PMC

Rehor I.; Cigler P. Precise Estimation of HPHT Nanodiamond Size Distribution Based on Transmission Electron Microscopy Image Analysis. Diamond Relat. Mater. 2014, 46, 21–2410.1016/j.diamond.2014.04.002. DOI

Morita Y.; Takimoto T.; Yamanaka H.; Kumekawa K.; Morino S.; Aonuma S.; Kimura T.; Komatsu N. A Facile and Scalable Process for Size- Controllable Separation of Nanodiamond Particles as Small as 4 nm. Small 2008, 4, 2154–215710.1002/smll.200800944. PubMed DOI

Osswald S.; Yushin G.; Mochalin V.; Kucheyev S. O.; Gogotsi Y. Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. J. Am. Chem. Soc. 2006, 128, 11635–1164210.1021/ja063303n. PubMed DOI

Pichot V.; Comet M.; Fousson E.; Baras C.; Senger A.; Le Normand F.; Spitzer D. An Efficient Purification Method for Detonation Nanodiamonds. Diamond Relat. Mater. 2008, 17, 13–2210.1016/j.diamond.2007.09.011. DOI

Shenderova O.; Petrov I.; Walsh J.; Grichko V.; Grishko V.; Tyler T.; Cunningham G. Modification of Detonation Nanodiamonds By heat Treatment in Air. Diamond Relat. Mater. 2006, 15, 1799–180310.1016/j.diamond.2006.08.032. DOI

Cunningham G.; Panich A. M.; Shames A. I.; Petrov I.; Shenderova O. Ozone-modified Detonation Nanodiamonds. Diamond Relat. Mater. 2008, 17, 650–65410.1016/j.diamond.2007.10.036. DOI

Shenderova O.; Koscheev A.; Zaripov N.; Petrov I.; Skryabin Y.; Detkov P.; Turner S.; Van Tendeloo G. Surface Chemistry and Properties of Ozone-Purified Detonation Nanodiamonds. J. Phys. Chem. C 2011, 115, 9827–983710.1021/jp1102466. DOI

Kozak H.; Remes Z.; Houdkova J.; Stehlik S.; Kromka A.; Rezek B. Chemical Modifications and Stability of Diamond Nanoparticles Resolved by Infrared Spectroscopy and Kelvin Force Microscopy. J. Nanopart. Res. 2013, 15, 1568.10.1007/s11051-013-1568-7. DOI

Ondič L.; Dohnalová K.; Pelant I.; Žídek K.; De Boer W. D. A. M. Data Processing Correction of the Irising Effect of a Fast-gating Intensified Charge-coupled Device on Laser-pulse-excited Luminescence Spectra. Rev. Sci. Instrum. 2010, 81, 063104.10.1063/1.3431536. PubMed DOI

Lesiak B.; Zemek J.; Jiricek P.; Stobinski L. Temperature Modification of Oxidized Multiwall Carbon Nanotubes Studied by Electron Spectroscopy Methods. Phys. Status Solidi B 2009, 246, 2645–264910.1002/pssb.200982268. DOI

Haerle R.; Riedo E.; Pasquarello A.; Baldereschi A. sp(2)/sp(3) Hybridization Ratio in Amorphous Carbon from C 1s Core-level Shifts: X-ray Photoelectron Spectroscopy and First-principles Calculation. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 65, 045101–04510910.1103/PhysRevB.65.045101. DOI

Osswald S.; Havel M.; Mochalin V.; Yushin G.; Gogotsi Y. Increase of Nanodiamond Crystal Size by Selective Oxidation. Diamond Relat. Mater. 2008, 17, 1122–112610.1016/j.diamond.2008.01.102. DOI

Popov C.; Kulisch W.; Bliznakov S.; Mednikarov B.; Spasov G.; Pirov J.; Jelinek M.; Kocourek T.; Zemek J. Characterization of the Bonding Structure of Nanocrystalline Diamond and Amorphous Carbon Films Prepared by Plasma Assisted Techniques. Appl. Phys. A: Mater. Sci. Process. 2007, 89, 209–21210.1007/s00339-007-4092-8. DOI

Beamson G.; Briggs D.. High Energy XPS of Organic Polymers: The Scienta ESCA 300 Database; Wiley: Chichester, U.K., 1992.

Xiao J.; Liu P.; Li L.; Yang G. Fluorescence Origin of Nanodiamonds. J. Phys. Chem. C 2015, 119, 2239–224810.1021/jp512188x. DOI

Solin A. S.; Ramdas A. K. Raman Spectrum of Diamond. Phys. Rev. B 1970, 1, 1687.10.1103/PhysRevB.1.1687. DOI

Chen P.; Huang F.; Yun S. Structural Analysis of Dynamically Synthesized Diamonds. Mater. Res. Bull. 2004, 39, 1589–159710.1016/j.materresbull.2004.05.009. DOI

Yoshikawa M.; Mori Y.; Obata H.; Maegawa M.; Katagiri G.; Ishida H.; Ishitani A. Raman Scattering from Nanometersized Diamond. Appl. Phys. Lett. 1995, 67, 694.10.1063/1.115206. DOI

Mermoux M.; Crisci A.; Petit T.; Girard H. A.; Arnault J-Ch. Surface Modifications of Detonation Nanodiamonds Probed by Multi-Wavelength Raman Spectroscopy. J. Phys. Chem. C 2014, 118, 23415–2342510.1021/jp507377z. DOI

Mochalin V.; Osswald S.; Gogotsi Y. Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders. Chem. Mater. 2009, 21, 273–27910.1021/cm802057q. DOI

Williams O. A.; Hees J.; Dieker Ch.; Jäger W.; Kirste L.; Nebel Ch. E. Size-Dependent Reactivity of Diamond Nanoparticles. ACS Nano 2010, 4, 4824–483010.1021/nn100748k. PubMed DOI

Barnard A. S.; Russo S. P.; Snook I. K. Coexistence of Bucky Diamond with Nanodiamond and Fullerene Carbon Phases. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 073406.10.1103/PhysRevB.68.073406. DOI

Barnard A. S.; Russo S. P.; Snook I. K. Size Dependent Phase Stability of Carbon Nanoparticles: Nanodiamond versus Fullerenes. J. Chem. Phys. 2003, 118, 5094–509710.1063/1.1545450. DOI

Barnard A. S.; Sternberg M. Crystallinity and Surface Electrostatics of Diamond Nanocrystals. J. Mater. Chem. 2007, 17, 4811–481910.1039/b710189a. DOI

Kaviani M.; Deák P.; Aradi B.; Köhler T.; Frauenheim T. How Small Nanodiamonds Can Be? MD Study of the Stability Against Graphitization. Diamond Relat. Mater. 2013, 33, 78–8410.1016/j.diamond.2013.01.002. DOI

Heyer S.; Janssen W.; Turner S.; Lu Y.-G.; Yeap W. S.; Verbeeck J.; Haenen K.; Krueger A. Toward Deep Blue Nano Hope Diamonds: Heavily Boron-Doped Diamond Nanoparticles. ACS Nano 2014, 8, 5757–576410.1021/nn500573x. PubMed DOI

Butenko Yu. V.; Kuznetsov V. L.; Chuvilin A. L.; Kolomiichuk V. N.; Stankus S. V.; Khairulin R. A.; Segall B. Kinetics of the Graphitization of Dispersed Diamonds at “Low” Temperatures. J. Appl. Phys. 2000, 88, 4380.10.1063/1.1289791. DOI

Pantea C.; Qian J.; Voronin G. A.; Zerda T. W. High Pressure Study of Graphitization of Diamond Crystals. J. Appl. Phys. 2002, 91, 1957.10.1063/1.1433181. DOI

Gogotsi Y. G.; Kailer A.; Nickel K. G. Transformation of Diamond to Graphite. Nature 1999, 401, 663–66410.1038/44323. DOI

Cumpson P. J.; Seah M. P. Elastic Scattering Corrections in AES and XPS. II. Estimating Attenuation Lengths and Conditions Required for their Valid Use in Overlayer/Substrate Experiments. Surf. Interface Anal. 1997, 25, 430–44610.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.3.CO;2-Z. DOI

Zhu S.; Zhang J.; Tang S.; Qiao C.; Wang L.; Wang H.; Liu X.; Li B.; Li Y.; Yu W.; et al. Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications. Adv. Funct. Mater. 2012, 22, 4732–474010.1002/adfm.201201499. DOI

Xiao J.; Liu P.; Li L.; Yang G. Fluorescence Origin of Nanodiamonds. J. Phys. Chem. C 2015, 119, 2239–224810.1021/jp512188x. DOI

Khong Y. L.; Collins A. T.; Allers L. Luminescence Decay Time Studies and Time-resolved Cathodoluminescence Spectroscopy of CVD Diamond. Diamond Relat. Mater. 1994, 3, 1023–102710.1016/0925-9635(94)90112-0. DOI

Partlow W. D.; Ruan J.; Witkowski R. E.; Choyke W. J.; Knight D. S. Cryogenic Cathodoluminescence of Plasma-deposited Polycrystalline Diamond Coatings. J. Appl. Phys. 1990, 67, 7019.10.1063/1.345048. DOI

Mykhaylyk O. O.; Solonin Y. M.; Batchelder D. N.; Brydson R. Transformation of Nanodiamond into Carbon Onions: a Comparative Study by High Resolution Transmission Electron Microscopy, Electron Energy-loss Spectroscopy, X-ray Diffraction, Small-angle X-ray Scattering, and Ultraviolet Raman spectroscopy. J. Appl. Phys. 2005, 97, 074302.10.1063/1.1868054. DOI

Aleksenskii A. E.; Osipov V. Y.; Vul A. Y.; Ber B. Y.; Smirnov A. B.; Melekhin V. G.; Adriaenssens G. J.; Iakoubovskii K. Optical Properties of Nanodiamond Layers. Phys. Solid State 2001, 43, 145–15010.1134/1.1340200. DOI

Ferrari A. C.; Robertson J. Raman Spectroscopy of Amorphous, Nanostructured, Diamond-like Carbon, and Nanodiamond. Philos. Trans. R. Soc., A 2004, 362, 2477–251210.1098/rsta.2004.1452. PubMed DOI

Pawlak R.; Glatzel T.; Pichot V.; Schmidlin L.; Kawai S.; Fremy S.; Spitzer D.; Meyer E. Local Detection of Nitrogen-Vacancy Centers in a Nanodiamond Monolayer. Nano Lett. 2013, 13, 5803–580710.1021/nl402243s. PubMed DOI

Korobov M. V.; Avramenko N. V.; Bogachev A. G.; Rozhkova N. N.; Osawa E. Nanophase of Water in Nano-Diamond Gel. J. Phys. Chem. C 2007, 111, 7330–733410.1021/jp0683420. DOI

Faraci G.; Gibilisco S.; Pennisi A. R. Quantum Confinement and Thermal Effects on the Raman Spectra of Si Nanocrystals. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 193410.10.1103/PhysRevB.80.193410. DOI

Duan Y.; Kong J. F.; Shen W. Z. Raman Investigation of Silicon Nanocrystals: Quantum Confinement and Laser-induced Thermal Effects. J. Raman Spectrosc. 2012, 43, 756–76010.1002/jrs.3094. DOI

Bersani D.; Lottici P. P.; Ding X.-Z. Phonon Confinement Effects in the Raman Scattering by TiO2 Nanocrystals. Appl. Phys. Lett. 1998, 72, 73.10.1063/1.120648. DOI

Calizo I.; Alim K. A.; Fonoberov V. A.; Krishnakumar S.; Shamsa M.; Balandin A. A.; Kurtz R. Micro-Raman Spectroscopic Characterization of ZnO Quantum Dots, Nanocrystals and Nanowires. Proc. of SPIE 2007, 6481, 64810N–210.1117/12.713648. DOI

Nemanich R. J.; Solin S. A.; Martin R. M. Light Scattering Study of Boron Nitride Microcrystals. Phys. Rev. B: Condens. Matter Mater. Phys. 1981, 23, 6348.10.1103/PhysRevB.23.6348. DOI

Richter H.; Wang Z. P.; Ley L. The One Phonon Raman Spectrum in Microcrystalline Silicon. Solid State Commun. 1981, 39, 625.10.1016/0038-1098(81)90337-9. DOI

Merkulov V. I.; Lannin J. S.; Munro C. H.; Asher S. A.; Veerasamy V. S.; Milne W. I. uv Studies of Tetrahedral Bonding in Diamond-like Amorphous Carbon. Phys. Rev. Lett. 1997, 78, 4869.10.1103/PhysRevLett.78.4869. DOI

Prawer S.; Nugent K. W.; Jamieson D. N.; Orwa J. O.; Bursill L. A.; Peng J. L. The Raman Spectrum of Nanocrystalline Diamond. Chem. Phys. Lett. 2000, 332, 93–9710.1016/S0009-2614(00)01236-7. DOI

Osswald S.; Mochalin V. N.; Havel M.; Yushin G.; Gogotsi Y. Phonon Confinement Effects in the Raman Spectrum of Nanodiamond. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 075419.10.1103/PhysRevB.80.075419. DOI

Iakoubovskii K.; Mitsuishi K.; Furuya K. High-resolution Electron Microscopy of Detonation Nanodiamond. Nanotechnology 2008, 19, 155705.10.1088/0957-4484/19/15/155705. PubMed DOI

Chaigneau M.; Picardi G.; Girard H. A.; Arnault J-Ch.; Ossikovski R. Laser Heating Versus Phonon Confinement Effect in the Raman Spectra of Diamond Nanoparticles. J. Nanopart. Res. 2012, 14, 955.10.1007/s11051-012-0955-9. DOI

Akahama Y.; Kawamura H. High-pressure Raman Spectroscopy of Diamond Anvils to 250 GPa: Method for Pressure Determination in the Multimegabar Pressure Range. J. Appl. Phys. 2004, 96, 3748.10.1063/1.1778482. DOI

Yur’ev G. S.; Dolmatov V. Yu. X Ray Diffraction Study of Detonation Nanodiamonds. Journal of Superhard Materials 2010, 32, 311–32810.3103/S1063457610050035. DOI

Vlasov I. I.; Shiryaev A. A.; Rendler T.; Steinert S.; Lee S.-Y.; Antonov D.; Vörös M.; Jelezko F.; Fisenko A. V.; Semjonova L. F.; et al. Molecular-Sized Fluorescent Nanodiamonds. Nat. Nanotechnol. 2014, 9, 54–5810.1038/nnano.2013.255. PubMed DOI

Wang C.; Kurtsiefer C.; Weinfurter H.; Burchard B. Single Photon Emission from SiV Centres in Diamond Produced by Ion Implantation. J. Phys. B: At., Mol. Opt. Phys. 2006, 39, 37–4110.1088/0953-4075/39/1/005. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Transition in morphology and properties in bottom-up HPHT nanodiamonds synthesized from chloroadamantane

. 2025 Apr 29 ; 7 (9) : 2575-2584. [epub] 20250310

High-Yield Production of SiV-Doped Nanodiamonds for Spectroscopy and Sensing Applications

. 2024 Nov 08 ; 7 (21) : 24766-24777. [epub] 20241025

Absolute energy levels in nanodiamonds of different origins and surface chemistries

. 2023 Aug 24 ; 5 (17) : 4402-4414. [epub] 20230620

Metastable Brominated Nanodiamond Surface Enables Room Temperature and Catalysis-Free Amine Chemistry

. 2022 Feb 03 ; 13 (4) : 1147-1158. [epub] 20220127

Size-Dependent Thermal Stability and Optical Properties of Ultra-Small Nanodiamonds Synthesized under High Pressure

. 2022 Jan 22 ; 12 (3) : . [epub] 20220122

Nanodiamond surface chemistry controls assembly of polypyrrole and generation of photovoltage

. 2021 Jan 12 ; 11 (1) : 590. [epub] 20210112

Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films

. 2018 Jun 02 ; 9 (6) : . [epub] 20180602

Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study

. 2017 ; 8 () : 1649-1657. [epub] 20170810

High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution

. 2016 Dec 02 ; 6 () : 38419. [epub] 20161202

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...