Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
16-09692Y
Grantová Agentura České Republiky
18-11711Y
Grantová Agentura České Republiky
PubMed
30424214
PubMed Central
PMC6187497
DOI
10.3390/mi9060281
PII: mi9060281
Knihovny.cz E-resources
- Keywords
- Kelvin probe force microscopy, color center, diamond, nanocrystalline diamond, silicon-vacancy center, surface photovoltage,
- Publication type
- Journal Article MeSH
Color centers in diamond have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report the optoelectronic investigation of shallow silicon vacancy (SiV) color centers in ultra-thin (7⁻40 nm) nanocrystalline diamond (NCD) films with variable surface chemistry. We show that hydrogenated ultra-thin NCD films exhibit no or lowered SiV photoluminescence (PL) and relatively high negative surface photovoltage (SPV) which is ascribed to non-radiative electron transitions from SiV to surface-related traps. Higher SiV PL and low positive SPV of oxidized ultra-thin NCD films indicate an efficient excitation-emission PL process without significant electron escape, yet with some hole trapping in diamond surface states. Decreasing SPV magnitude and increasing SiV PL intensity with thickness, in both cases, is attributed to resonant energy transfer between shallow and bulk SiV. We also demonstrate that thermal treatments (annealing in air or in hydrogen gas), commonly applied to modify the surface chemistry of nanodiamonds, are also applicable to ultra-thin NCD films in terms of tuning their SiV PL and surface chemistry.
Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
Institute of Physics ASCR Cukrovarnická 10 Prague 16200 Czech Republic
See more in PubMed
Aharonovich I., Englund D., Toth M. Solid-state single-photon emitters. Nat. Photonics. 2016;10:631–641. doi: 10.1038/nphoton.2016.186. DOI
Bernardi E., Nelz R., Sonusen S., Neu E. Nanoscale Sensing Using Point Defects in Single-Crystal Diamond: Recent Progress on Nitrogen Vacancy Center-Based Sensors. Crystals. 2017;7:124. doi: 10.3390/cryst7050124. DOI
Dragounová K., Potůček Z., Potocký Š., Bryknar Z., Kromka A. Determination of temperature dependent parameters of zero-phonon line in photo-luminescence spectrum of silicon-vacancy centre in CVD diamond thin films. J. Electr. Eng. 2017;68 doi: 10.1515/jee-2017-0010. DOI
Neu E., Guldner F., Arend C., Liang Y., Ghodbane S., Sternschulte H., Steinmüller-Nethl D., Krueger A., Becher C. Low temperature investigations and surface treatments of colloidal narrowband fluorescent nanodiamonds. J. Appl. Phys. 2013;113:203507. doi: 10.1063/1.4807398. DOI
Müller T., Hepp C., Pingault B., Neu E., Gsell S., Schreck M., Sternschulte H., Steinmüller-Nethl D., Becher C., Atatüre M. Optical signatures of silicon-vacancy spins in diamond. Nat. Commun. 2014;5 doi: 10.1038/ncomms4328. PubMed DOI
Jahnke K.D., Sipahigil A., Binder J.M., Doherty M.W., Metsch M., Rogers L.J., Manson N.B., Lukin M.D., Jelezko F. Electron–phonon processes of the silicon-vacancy centre in diamond. New J. Phys. 2015;17:043011. doi: 10.1088/1367-2630/17/4/043011. DOI
Lesik M., Raatz N., Tallaire A., Spinicelli P., John R., Achard J., Gicquel A., Jacques V., Roch J.-F., Meijer J., et al. Production of bulk NV centre arrays by shallow implantation and diamond CVD overgrowth. Phys. Status Solidi A. 2016;213:2594–2600. doi: 10.1002/pssa.201600219. DOI
Stehlik S., Varga M., Stenclova P., Ondic L., Ledinsky M., Pangrac J., Vanek O., Lipov J., Kromka A., Rezek B. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds. ACS Appl. Mater. Interfaces. 2017;9:38842–38853. doi: 10.1021/acsami.7b14436. PubMed DOI
Ondič L., Varga M., Hruška K., Fait J., Kapusta P. Enhanced Extraction of Silicon-Vacancy Centers Light Emission Using Bottom-Up Engineered Polycrystalline Diamond Photonic Crystal Slabs. ACS Nano. 2017;11:2972–2981. doi: 10.1021/acsnano.6b08412. PubMed DOI
Aharonovich I., Greentree A.D., Prawer S. Diamond photonics. Nat. Photonics. 2011;5:397–405. doi: 10.1038/nphoton.2011.54. DOI
Schell A.W., Kewes G., Hanke T., Leitenstorfer A., Bratschitsch R., Benson O., Aichele T. Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Opt. Express. 2011;19:7914–7920. doi: 10.1364/OE.19.007914. PubMed DOI
Choy J.T., Hausmann B.J.M., Babinec T.M., Bulu I., Khan M., Maletinsky P., Yacoby A., Lončar M. Enhanced single-photon emission from a diamond–silver aperture. Nat. Photonics. 2011;5:738–743. doi: 10.1038/nphoton.2011.249. DOI
Häußler S., Thiering G., Dietrich A., Waasem N., Teraji T., Isoya J., Iwasaki T., Hatano M., Jelezko F., Gali A., et al. Photoluminescence excitation spectroscopy of SiV − and GeV − color center in diamond. New J. Phys. 2017;19:063036. doi: 10.1088/1367-2630/aa73e5. DOI
Goss J.P., Briddon P.R., Shaw M.J. Density functional simulations of silicon-containing point defects in diamond. Phys. Rev. B. 2007;76:075204. doi: 10.1103/PhysRevB.76.075204. DOI
Gali A., Maze J.R. Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties. Phys. Rev. B. 2013;88:235205. doi: 10.1103/PhysRevB.88.235205. DOI
Iakoubovskii K., Adriaenssens G.J. Luminescence excitation spectra in diamond. Phys. Rev. B. 2000;61:10174–10182. doi: 10.1103/PhysRevB.61.10174. DOI
Dhomkar S., Zangara P.R., Henshaw J., Meriles C.A. On-Demand Generation of Neutral and Negatively Charged Silicon-Vacancy Centers in Diamond. Phys. Rev. Lett. 2018;120 doi: 10.1103/PhysRevLett.120.117401. PubMed DOI
Stehlik S., Glatzel T., Pichot V., Pawlak R., Meyer E., Spitzer D., Rezek B. Water interaction with hydrogenated and oxidized detonation nanodiamonds—Microscopic and spectroscopic analyses. Diam. Relat. Mater. 2015 doi: 10.1016/j.diamond.2015.08.016. DOI
Pawlak R., Glatzel T., Pichot V., Schmidlin L., Kawai S., Fremy S., Spitzer D., Meyer E. Local Detection of Nitrogen-Vacancy Centers in a Nanodiamond Monolayer. Nano Lett. 2013;13:5803–5807. doi: 10.1021/nl402243s. PubMed DOI
Artemenko A., Kozak H., Biederman H., Choukourov A., Kromka A. Amination of NCD Films for Possible Application in Biosensing: Amination of NCD Films for Possible Application in Biosensing. Plasma Process. Polym. 2015;12:336–346. doi: 10.1002/ppap.201400151. DOI
Sadewasser S., Glatzel T., Rusu M., Jäger-Waldau A., Lux-Steiner M.C. High-resolution work function imaging of single grains of semiconductor surfaces. Appl. Phys. Lett. 2002;80:2979–2981. doi: 10.1063/1.1471375. DOI
Diesinger H., Deresmes D., Nys J.-P., Mélin T. Kelvin force microscopy at the second cantilever resonance: An out-of-vacuum crosstalk compensation setup. Ultramicroscopy. 2008;108:773–781. doi: 10.1016/j.ultramic.2008.01.003. PubMed DOI
Kronik L., Shapira Y. Surface photovoltage phenomena: Theory, experiment, and applications. Surf. Sci. Rep. 1999;37:1–206. doi: 10.1016/S0167-5729(99)00002-3. DOI
D’Haenens-Johansson U.F.S., Edmonds A.M., Green B.L., Newton M.E., Davies G., Martineau P.M., Khan R.U.A., Twitchen D.J. Optical properties of the neutral silicon split-vacancy center in diamond. Phys. Rev. B. 2011;84 doi: 10.1103/PhysRevB.84.245208. PubMed DOI
Barnes W.L. Fluorescence Near Interfaces: The Role of Photonic MODE density. J. Modern Optics. 1998;45:661–699. doi: 10.1080/09500349808230614. DOI
Danos L., Greef R., Markvart T. Efficient fluorescence quenching near crystalline silicon from Langmuir–Blodgett dye films. Thin Solid Films. 2008;516:7251–7255. doi: 10.1016/j.tsf.2007.12.103. DOI
Petráková V., Taylor A., Kratochvílová I., Fendrych F., Vacík J., Kučka J., Štursa J., Cígler P., Ledvina M., Fišerová A., et al. Luminescence of Nanodiamond Driven by Atomic Functionalization: Towards Novel Detection Principles. Adv. Funct. Mater. 2012;22:812–819. doi: 10.1002/adfm.201101936. DOI
Maier F., Ristein J., Ley L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys. Rev. B. 2001;64 doi: 10.1103/PhysRevB.64.165411. DOI
Harniman R.L., Fox O.J.L., Janssen W., Drijkoningen S., Haenen K., May P.W. Direct observation of electron emission from grain boundaries in CVD diamond by PeakForce-controlled tunnelling atomic force microscopy. Carbon. 2015;94:386–395. doi: 10.1016/j.carbon.2015.06.082. DOI
Orlanducci S., Cianchetta I., Tamburri E., Guglielmotti V., Terranova M.L. Effects of Au nanoparticles on photoluminescence emission from Si-vacancy in diamond. Chem. Phys. Lett. 2012;549:51–57. doi: 10.1016/j.cplett.2012.08.032. DOI
Ristein J. Surface science of diamond: Familiar and amazing. Surf. Sci. 2006;600:3677–3689. doi: 10.1016/j.susc.2006.01.087. DOI
Verveniotis E., Kromka A., Rezek B. Controlling Electrostatic Charging of Nanocrystalline Diamond at Nanoscale. Langmuir. 2013;29:7111–7117. doi: 10.1021/la4008312. PubMed DOI
Furthmüller J., Hafner J., Kresse G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. Phys. Rev. B. 1996;53:7334–7351. doi: 10.1103/PhysRevB.53.7334. PubMed DOI
Itoh Y., Sumikawa Y., Umezawa H., Kawarada H. Trapping mechanism on oxygen-terminated diamond surfaces. Appl. Phys. Lett. 2006;89:203503. doi: 10.1063/1.2387983. DOI
Stehlik S., Varga M., Ledinsky M., Jirasek V., Artemenko A., Kozak H., Ondic L., Skakalova V., Argentero G., Pennycook T., et al. Size and Purity Control of HPHT Nanodiamonds down to 1 nm. J. Phys. Chem. C. 2015;119:27708–27720. doi: 10.1021/acs.jpcc.5b05259. PubMed DOI PMC
Ahmed A.-I., Mandal S., Gines L., Williams O.A., Cheng C.-L. Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon. 2016;110:438–442. doi: 10.1016/j.carbon.2016.09.019. DOI