• This record comes from PubMed

Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films

. 2018 Jun 02 ; 9 (6) : . [epub] 20180602

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
16-09692Y Grantová Agentura České Republiky
18-11711Y Grantová Agentura České Republiky

Color centers in diamond have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report the optoelectronic investigation of shallow silicon vacancy (SiV) color centers in ultra-thin (7⁻40 nm) nanocrystalline diamond (NCD) films with variable surface chemistry. We show that hydrogenated ultra-thin NCD films exhibit no or lowered SiV photoluminescence (PL) and relatively high negative surface photovoltage (SPV) which is ascribed to non-radiative electron transitions from SiV to surface-related traps. Higher SiV PL and low positive SPV of oxidized ultra-thin NCD films indicate an efficient excitation-emission PL process without significant electron escape, yet with some hole trapping in diamond surface states. Decreasing SPV magnitude and increasing SiV PL intensity with thickness, in both cases, is attributed to resonant energy transfer between shallow and bulk SiV. We also demonstrate that thermal treatments (annealing in air or in hydrogen gas), commonly applied to modify the surface chemistry of nanodiamonds, are also applicable to ultra-thin NCD films in terms of tuning their SiV PL and surface chemistry.

See more in PubMed

Aharonovich I., Englund D., Toth M. Solid-state single-photon emitters. Nat. Photonics. 2016;10:631–641. doi: 10.1038/nphoton.2016.186. DOI

Bernardi E., Nelz R., Sonusen S., Neu E. Nanoscale Sensing Using Point Defects in Single-Crystal Diamond: Recent Progress on Nitrogen Vacancy Center-Based Sensors. Crystals. 2017;7:124. doi: 10.3390/cryst7050124. DOI

Dragounová K., Potůček Z., Potocký Š., Bryknar Z., Kromka A. Determination of temperature dependent parameters of zero-phonon line in photo-luminescence spectrum of silicon-vacancy centre in CVD diamond thin films. J. Electr. Eng. 2017;68 doi: 10.1515/jee-2017-0010. DOI

Neu E., Guldner F., Arend C., Liang Y., Ghodbane S., Sternschulte H., Steinmüller-Nethl D., Krueger A., Becher C. Low temperature investigations and surface treatments of colloidal narrowband fluorescent nanodiamonds. J. Appl. Phys. 2013;113:203507. doi: 10.1063/1.4807398. DOI

Müller T., Hepp C., Pingault B., Neu E., Gsell S., Schreck M., Sternschulte H., Steinmüller-Nethl D., Becher C., Atatüre M. Optical signatures of silicon-vacancy spins in diamond. Nat. Commun. 2014;5 doi: 10.1038/ncomms4328. PubMed DOI

Jahnke K.D., Sipahigil A., Binder J.M., Doherty M.W., Metsch M., Rogers L.J., Manson N.B., Lukin M.D., Jelezko F. Electron–phonon processes of the silicon-vacancy centre in diamond. New J. Phys. 2015;17:043011. doi: 10.1088/1367-2630/17/4/043011. DOI

Lesik M., Raatz N., Tallaire A., Spinicelli P., John R., Achard J., Gicquel A., Jacques V., Roch J.-F., Meijer J., et al. Production of bulk NV centre arrays by shallow implantation and diamond CVD overgrowth. Phys. Status Solidi A. 2016;213:2594–2600. doi: 10.1002/pssa.201600219. DOI

Stehlik S., Varga M., Stenclova P., Ondic L., Ledinsky M., Pangrac J., Vanek O., Lipov J., Kromka A., Rezek B. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds. ACS Appl. Mater. Interfaces. 2017;9:38842–38853. doi: 10.1021/acsami.7b14436. PubMed DOI

Ondič L., Varga M., Hruška K., Fait J., Kapusta P. Enhanced Extraction of Silicon-Vacancy Centers Light Emission Using Bottom-Up Engineered Polycrystalline Diamond Photonic Crystal Slabs. ACS Nano. 2017;11:2972–2981. doi: 10.1021/acsnano.6b08412. PubMed DOI

Aharonovich I., Greentree A.D., Prawer S. Diamond photonics. Nat. Photonics. 2011;5:397–405. doi: 10.1038/nphoton.2011.54. DOI

Schell A.W., Kewes G., Hanke T., Leitenstorfer A., Bratschitsch R., Benson O., Aichele T. Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Opt. Express. 2011;19:7914–7920. doi: 10.1364/OE.19.007914. PubMed DOI

Choy J.T., Hausmann B.J.M., Babinec T.M., Bulu I., Khan M., Maletinsky P., Yacoby A., Lončar M. Enhanced single-photon emission from a diamond–silver aperture. Nat. Photonics. 2011;5:738–743. doi: 10.1038/nphoton.2011.249. DOI

Häußler S., Thiering G., Dietrich A., Waasem N., Teraji T., Isoya J., Iwasaki T., Hatano M., Jelezko F., Gali A., et al. Photoluminescence excitation spectroscopy of SiV − and GeV − color center in diamond. New J. Phys. 2017;19:063036. doi: 10.1088/1367-2630/aa73e5. DOI

Goss J.P., Briddon P.R., Shaw M.J. Density functional simulations of silicon-containing point defects in diamond. Phys. Rev. B. 2007;76:075204. doi: 10.1103/PhysRevB.76.075204. DOI

Gali A., Maze J.R. Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties. Phys. Rev. B. 2013;88:235205. doi: 10.1103/PhysRevB.88.235205. DOI

Iakoubovskii K., Adriaenssens G.J. Luminescence excitation spectra in diamond. Phys. Rev. B. 2000;61:10174–10182. doi: 10.1103/PhysRevB.61.10174. DOI

Dhomkar S., Zangara P.R., Henshaw J., Meriles C.A. On-Demand Generation of Neutral and Negatively Charged Silicon-Vacancy Centers in Diamond. Phys. Rev. Lett. 2018;120 doi: 10.1103/PhysRevLett.120.117401. PubMed DOI

Stehlik S., Glatzel T., Pichot V., Pawlak R., Meyer E., Spitzer D., Rezek B. Water interaction with hydrogenated and oxidized detonation nanodiamonds—Microscopic and spectroscopic analyses. Diam. Relat. Mater. 2015 doi: 10.1016/j.diamond.2015.08.016. DOI

Pawlak R., Glatzel T., Pichot V., Schmidlin L., Kawai S., Fremy S., Spitzer D., Meyer E. Local Detection of Nitrogen-Vacancy Centers in a Nanodiamond Monolayer. Nano Lett. 2013;13:5803–5807. doi: 10.1021/nl402243s. PubMed DOI

Artemenko A., Kozak H., Biederman H., Choukourov A., Kromka A. Amination of NCD Films for Possible Application in Biosensing: Amination of NCD Films for Possible Application in Biosensing. Plasma Process. Polym. 2015;12:336–346. doi: 10.1002/ppap.201400151. DOI

Sadewasser S., Glatzel T., Rusu M., Jäger-Waldau A., Lux-Steiner M.C. High-resolution work function imaging of single grains of semiconductor surfaces. Appl. Phys. Lett. 2002;80:2979–2981. doi: 10.1063/1.1471375. DOI

Diesinger H., Deresmes D., Nys J.-P., Mélin T. Kelvin force microscopy at the second cantilever resonance: An out-of-vacuum crosstalk compensation setup. Ultramicroscopy. 2008;108:773–781. doi: 10.1016/j.ultramic.2008.01.003. PubMed DOI

Kronik L., Shapira Y. Surface photovoltage phenomena: Theory, experiment, and applications. Surf. Sci. Rep. 1999;37:1–206. doi: 10.1016/S0167-5729(99)00002-3. DOI

D’Haenens-Johansson U.F.S., Edmonds A.M., Green B.L., Newton M.E., Davies G., Martineau P.M., Khan R.U.A., Twitchen D.J. Optical properties of the neutral silicon split-vacancy center in diamond. Phys. Rev. B. 2011;84 doi: 10.1103/PhysRevB.84.245208. PubMed DOI

Barnes W.L. Fluorescence Near Interfaces: The Role of Photonic MODE density. J. Modern Optics. 1998;45:661–699. doi: 10.1080/09500349808230614. DOI

Danos L., Greef R., Markvart T. Efficient fluorescence quenching near crystalline silicon from Langmuir–Blodgett dye films. Thin Solid Films. 2008;516:7251–7255. doi: 10.1016/j.tsf.2007.12.103. DOI

Petráková V., Taylor A., Kratochvílová I., Fendrych F., Vacík J., Kučka J., Štursa J., Cígler P., Ledvina M., Fišerová A., et al. Luminescence of Nanodiamond Driven by Atomic Functionalization: Towards Novel Detection Principles. Adv. Funct. Mater. 2012;22:812–819. doi: 10.1002/adfm.201101936. DOI

Maier F., Ristein J., Ley L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys. Rev. B. 2001;64 doi: 10.1103/PhysRevB.64.165411. DOI

Harniman R.L., Fox O.J.L., Janssen W., Drijkoningen S., Haenen K., May P.W. Direct observation of electron emission from grain boundaries in CVD diamond by PeakForce-controlled tunnelling atomic force microscopy. Carbon. 2015;94:386–395. doi: 10.1016/j.carbon.2015.06.082. DOI

Orlanducci S., Cianchetta I., Tamburri E., Guglielmotti V., Terranova M.L. Effects of Au nanoparticles on photoluminescence emission from Si-vacancy in diamond. Chem. Phys. Lett. 2012;549:51–57. doi: 10.1016/j.cplett.2012.08.032. DOI

Ristein J. Surface science of diamond: Familiar and amazing. Surf. Sci. 2006;600:3677–3689. doi: 10.1016/j.susc.2006.01.087. DOI

Verveniotis E., Kromka A., Rezek B. Controlling Electrostatic Charging of Nanocrystalline Diamond at Nanoscale. Langmuir. 2013;29:7111–7117. doi: 10.1021/la4008312. PubMed DOI

Furthmüller J., Hafner J., Kresse G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. Phys. Rev. B. 1996;53:7334–7351. doi: 10.1103/PhysRevB.53.7334. PubMed DOI

Itoh Y., Sumikawa Y., Umezawa H., Kawarada H. Trapping mechanism on oxygen-terminated diamond surfaces. Appl. Phys. Lett. 2006;89:203503. doi: 10.1063/1.2387983. DOI

Stehlik S., Varga M., Ledinsky M., Jirasek V., Artemenko A., Kozak H., Ondic L., Skakalova V., Argentero G., Pennycook T., et al. Size and Purity Control of HPHT Nanodiamonds down to 1 nm. J. Phys. Chem. C. 2015;119:27708–27720. doi: 10.1021/acs.jpcc.5b05259. PubMed DOI PMC

Ahmed A.-I., Mandal S., Gines L., Williams O.A., Cheng C.-L. Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon. 2016;110:438–442. doi: 10.1016/j.carbon.2016.09.019. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...