Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study

. 2017 ; 8 () : 1649-1657. [epub] 20170810

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28875102

Diamond nanoparticles, known as nanodiamonds (NDs), possess several medically significant properties. Having a tailorable and easily accessible surface gives them great potential for use in sensing and imaging applications and as a component of cell growth scaffolds. In this work we investigate in vitro interactions of human osteoblast-like SAOS-2 cells with four different groups of NDs, namely high-pressure high-temperature (HPHT) NDs (diameter 18-210 nm, oxygen-terminated), photoluminescent HPHT NDs (diameter 40 nm, oxygen-terminated), detonation NDs (diameter 5 nm, H-terminated), and the same detonation NDs further oxidized by annealing at 450 °C. The influence of the NDs on cell viability and cell count was measured by the mitochondrial metabolic activity test and by counting cells with stained nuclei. The interaction of NDs with cells was monitored by phase contrast live-cell imaging in real time. For both types of oxygen-terminated HPHT NDs, the cell viability and the cell number remained almost the same for concentrations up to 100 µg/mL within the whole range of ND diameters tested. The uptake of hydrogen-terminated detonation NDs caused the viability and the cell number to decrease by 80-85%. The oxidation of the NDs hindered the decrease, but on day 7, a further decrease was observed. While the O-terminated NDs showed mechanical obstruction of cells by agglomerates preventing cell adhesion, migration and division, the H-terminated detonation NDs exhibited rapid penetration into the cells from the beginning of the cultivation period, and also rapid cell congestion and a rapid reduction in viability. These findings are discussed with reference to relevant properties of NDs such as surface chemical bonds, zeta potential and nanoparticle types.

Zobrazit více v PubMed

Monaco A M, Giugliano M. Beilstein J Nanotechnol. 2014;5:1849–1863. doi: 10.3762/bjnano.5.196. PubMed DOI PMC

May P W. Philos Trans R Soc, A. 2000;358:473–495. doi: 10.1098/rsta.2000.0542. DOI

Kaur R, Badea I. Int J Nanomed. 2013;8:203–220. doi: 10.2147/IJN.S37348. PubMed DOI PMC

Ho D, editor. Nanodiamonds: applications in biology and nanoscale medicine. Berlin, Germany: Springer; 2010.

Bacakova L, Kopova I, Stankova L, Liskova J, Vacik J, Lavrentiev V, Kromka A, Potocky S, Stranska D. Phys Status Solidi A. 2014;211:2688–2702. doi: 10.1002/pssa.201431402. DOI

Bacakova L, Broz A, Liskova J, Stankova L, Potocky S, Kromka A. The Application of Nanodiamond in Biotechnology and Tissue Engineering. In: Aliofkhazraei M, editor. Diamond and Carbon Composites and Nanocomposites. Rijeka, Croatia: InTech; 2016. DOI

Tang L, Tsai C, Gerberich W W, Kruckeberg L, Kania D R. Biomaterials. 1995;16:483–488. doi: 10.1016/0142-9612(95)98822-V. PubMed DOI

Paget V, Sergent J A, Grall R, Altmeyer-Morel S, Girard H A, Petit T, Gesset C, Mermoux M, Bergonzo P, Arnault J C, et al. Nanotoxicology. 2014;8:46–56. doi: 10.3109/17435390.2013.855828. PubMed DOI

Mochalin V N, Shenderova O, Ho D, Gogotsi Y. Nat Nanotechnol. 2012;7:11–23. doi: 10.1038/nnano.2011.209. PubMed DOI

Liu K-K, Wang C-C, Cheng C-L, Chao J-I. Biomaterials. 2009;30:4249–4259. doi: 10.1016/j.biomaterials.2009.04.056. PubMed DOI

Vaijayanthimala V, Tzeng Y-K, Chang H-C, Li C-L. Nanotechnology. 2009;20:425103. doi: 10.1088/0957-4484/20/42/425103. PubMed DOI

Yan L, Yang Y, Zhang W, Chen X. Adv Mater. 2014;26:5533–5540. doi: 10.1002/adma.201305683. PubMed DOI

Lam R, Ho D. Expert Opin Drug Delivery. 2009;6:883–895. doi: 10.1517/17425240903156382. PubMed DOI

Vaijayanthimala V, Lee D K, Kim S V, Yen A, Tsai N, Ho D, Chang H-C, Shenderova O. Expert Opin Drug Delivery. 2015;12:735–749. doi: 10.1517/17425247.2015.992412. PubMed DOI

Chao J-I, Perevedentseva E, Chung P-H, Liu K-K, Cheng C-Y, Chang C-C, Cheng C-L. Biophys J. 2007;93:2199–2208. doi: 10.1529/biophysj.107.108134. PubMed DOI PMC

Aharonovich I, Neu E. Adv Opt Mater. 2014;2:911–928. doi: 10.1002/adom.201400189. DOI

Balasubramanian G, Lazariev A, Arumugam S R, Duan D-w. Curr Opin Chem Biol. 2014;20:69–77. doi: 10.1016/j.cbpa.2014.04.014. PubMed DOI

Schirhagl R, Chang K, Loretz M, Degen C L. Annu Rev Phys Chem. 2014;65:83–105. doi: 10.1146/annurev-physchem-040513-103659. PubMed DOI

Dolmatov V Yu. Russ Chem Rev. 2007;76:339–360. doi: 10.1070/RC2007v076n04ABEH003643. DOI

Ōsawa E. Pure Appl Chem. 2008;80:1365–1379. doi: 10.1351/pac200880071365. DOI

Boudou J-P, Curmi P A, Jelezko F, Wrachtrup J, Aubert P, Sennour M, Balasubramanian G, Reuter R, Thorel A, Gaffet E. Nanotechnology. 2009;20:235602. doi: 10.1088/0957-4484/20/23/235602. PubMed DOI PMC

Stehlik S, Varga M, Ledinsky M, Jirasek V, Artemenko A, Kozak H, Ondic L, Skakalova V, Argentero G, Pennycook T, et al. J Phys Chem C. 2015;119:27708–27720. doi: 10.1021/acs.jpcc.5b05259. PubMed DOI PMC

Krueger A, Stegk J, Liang Y, Lu L, Jarre G. Langmuir. 2008;24:4200–4204. doi: 10.1021/la703482v. PubMed DOI

Keremidarska M, Ganeva A, Mitev D, Hikov T, Presker R, Pramatarova L, Krasteva N. Biotechnol Biotechnol Equip. 2014;28:733–739. doi: 10.1080/13102818.2014.947704. PubMed DOI PMC

Schrand A M, Hens S A C, Shenderova O A. Crit Rev Solid State Mater Sci. 2009;34:18–74. doi: 10.1080/10408430902831987. DOI

Pichot V, Comet M, Fousson E, Baras C, Senger A, Le Normand F, Spitzer D. Diamond Relat Mater. 2008;17:13–22. doi: 10.1016/j.diamond.2007.09.011. DOI

Shenderova O, Petrov I, Walsh J, Grichko V, Grishko V, Tyler T, Cunningham G. Diamond Relat Mater. 2006;15:1799–1803. doi: 10.1016/j.diamond.2006.08.032. DOI

Puzyr' A P, Tarskikh S V, Makarskaya G V, Chiganova G A, Larionova I S, Detkov P Ya, Bondar V S. Dokl Biochem Biophys. 2002;385:201–204. doi: 10.1023/A:1019959322589. PubMed DOI

Puzyr A P, Neshumaev D A, Tarskikh S V, Makarskaia G V, Dolmatov V I, Bondar V S. Biofizika. 2005;50:101–106. PubMed

Xing Y, Xiong W, Zhu L, Ōsawa E, Hussin S, Dai L. ACS Nano. 2011;5:2376–2384. doi: 10.1021/nn200279k. PubMed DOI

Zhu Y, Li W, Zhang Y, Li J, Liang L, Zhang X, Chen N, Sun Y, Chen W, Tai R, et al. Small. 2012;8:1771–1779. doi: 10.1002/smll.201102539. PubMed DOI

Wierzbicki M, Sawosz E, Grodzik M, Hotowy A, Prasek M, Jaworski S, Sawosz F, Chwalibog A. Int J Nanomed. 2013;8:3427–3435. doi: 10.2147/IJN.S49745. PubMed DOI PMC

Xing Z, Pedersen T O, Wu X, Xue Y, Sun Y, Finne-Wistrand A, Kloss F R, Waag T, Krueger A, Steinmüller-Nethl D, et al. Tissue Eng, Part A. 2013;19:1783–1791. doi: 10.1089/ten.tea.2012.0336. PubMed DOI PMC

Eidi H, David M-O, Crépeaux G, Henry L, Joshi V, Berger M-H, Sennour M, Cadusseau J, Gherardi R K, Curmi P A. BMC Med. 2015;13:144. doi: 10.1186/s12916-015-0388-2. PubMed DOI PMC

Solarska K, Gajewska A, Bartosz G, Mitura K. J Nanosci Nanotechnol. 2012;12:5117–5121. doi: 10.1166/jnn.2012.4952. PubMed DOI

Landgraf L, Müller I, Ernst P, Schäfer M, Rosman C, Schick I, Köhler O, Oehring H, Breus V V, Basché T, et al. Beilstein J Nanotechnol. 2015;6:300–312. doi: 10.3762/bjnano.6.28. PubMed DOI PMC

Wehling J, Dringen R, Zare R N, Maas M, Rezwan K. ACS Nano. 2014;8:6475–6483. doi: 10.1021/nn502230m. PubMed DOI

Lombardi S L, editor. Nanoparticles: new research. New York, NY, U.S.A.: Nova Science Publishers; 2008.

Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C, et al. Nat Nanotechnol. 2008;3:284–288. doi: 10.1038/nnano.2008.99. PubMed DOI

Kozak H, Artemenko A, Čermák J, Švrček V, Kromka A, Rezek B. Vib Spectrosc. 2016;83:108–114. doi: 10.1016/j.vibspec.2016.01.010. DOI

Jirásek V, Čech J, Kozak H, Artemenko A, Černák M, Kromka A. Phys Status Solidi A. 2016;213:2680–2686. doi: 10.1002/pssa.201600184. DOI

Kromka A, Jira J, Stenclova P, Kriha V, Kozak H, Beranova J, Vretenar V, Skakalova V, Rezek B. Phys Status Solidi B. 2016;253:2481–2485. doi: 10.1002/pssb.201600237. DOI

Bondar O V, Saifullina D V, Shakhmaeva I I, Mavlyutova I I, Abdullin T I. ActaNaturae. 2012;4:78–81. PubMed PMC

Platel A, Carpentier R, Becart E, Mordacq G, Betbeder D, Nesslany F. J Appl Toxicol. 2016;36:434–444. doi: 10.1002/jat.3247. PubMed DOI

Carmona-Ribeiro A M, Dias de Melo Carrasco L. Int J Mol Sci. 2013;14:9906–9946. doi: 10.3390/ijms14059906. PubMed DOI PMC

Fröhlich E. Int J Nanomed. 2012;7:5577–5591. doi: 10.2147/IJN.S36111. PubMed DOI PMC

Grall R, Girard H, Saad L, Petit T, Gesset C, Combis-Schlumberger M, Paget V, Delic J, Arnault J-C, Chevillard S. Biomaterials. 2015;61:290–298. doi: 10.1016/j.biomaterials.2015.05.034. PubMed DOI

Kozak H, Remes Z, Houdkova J, Stehlik S, Kromka A, Rezek B. J Nanopart Res. 2013;15:1568. doi: 10.1007/s11051-013-1568-7. DOI

Kromka A, Čech J, Kozak H, Artemenko A, Ižák T, Čermák J, Rezek B, Černák M. Phys Status Solidi B. 2015;252:2602–2607. doi: 10.1002/pssb.201552232. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine

. 2020 Jan 23 ; 10 (2) : . [epub] 20200123

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...