Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28875102
PubMed Central
PMC5564261
DOI
10.3762/bjnano.8.165
Knihovny.cz E-zdroje
- Klíčová slova
- FTIR, MTS, SAOS-2 cells, cell viability, live-cell imaging, nanodiamond,
- Publikační typ
- časopisecké články MeSH
Diamond nanoparticles, known as nanodiamonds (NDs), possess several medically significant properties. Having a tailorable and easily accessible surface gives them great potential for use in sensing and imaging applications and as a component of cell growth scaffolds. In this work we investigate in vitro interactions of human osteoblast-like SAOS-2 cells with four different groups of NDs, namely high-pressure high-temperature (HPHT) NDs (diameter 18-210 nm, oxygen-terminated), photoluminescent HPHT NDs (diameter 40 nm, oxygen-terminated), detonation NDs (diameter 5 nm, H-terminated), and the same detonation NDs further oxidized by annealing at 450 °C. The influence of the NDs on cell viability and cell count was measured by the mitochondrial metabolic activity test and by counting cells with stained nuclei. The interaction of NDs with cells was monitored by phase contrast live-cell imaging in real time. For both types of oxygen-terminated HPHT NDs, the cell viability and the cell number remained almost the same for concentrations up to 100 µg/mL within the whole range of ND diameters tested. The uptake of hydrogen-terminated detonation NDs caused the viability and the cell number to decrease by 80-85%. The oxidation of the NDs hindered the decrease, but on day 7, a further decrease was observed. While the O-terminated NDs showed mechanical obstruction of cells by agglomerates preventing cell adhesion, migration and division, the H-terminated detonation NDs exhibited rapid penetration into the cells from the beginning of the cultivation period, and also rapid cell congestion and a rapid reduction in viability. These findings are discussed with reference to relevant properties of NDs such as surface chemical bonds, zeta potential and nanoparticle types.
Zobrazit více v PubMed
Monaco A M, Giugliano M. Beilstein J Nanotechnol. 2014;5:1849–1863. doi: 10.3762/bjnano.5.196. PubMed DOI PMC
May P W. Philos Trans R Soc, A. 2000;358:473–495. doi: 10.1098/rsta.2000.0542. DOI
Kaur R, Badea I. Int J Nanomed. 2013;8:203–220. doi: 10.2147/IJN.S37348. PubMed DOI PMC
Ho D, editor. Nanodiamonds: applications in biology and nanoscale medicine. Berlin, Germany: Springer; 2010.
Bacakova L, Kopova I, Stankova L, Liskova J, Vacik J, Lavrentiev V, Kromka A, Potocky S, Stranska D. Phys Status Solidi A. 2014;211:2688–2702. doi: 10.1002/pssa.201431402. DOI
Bacakova L, Broz A, Liskova J, Stankova L, Potocky S, Kromka A. The Application of Nanodiamond in Biotechnology and Tissue Engineering. In: Aliofkhazraei M, editor. Diamond and Carbon Composites and Nanocomposites. Rijeka, Croatia: InTech; 2016. DOI
Tang L, Tsai C, Gerberich W W, Kruckeberg L, Kania D R. Biomaterials. 1995;16:483–488. doi: 10.1016/0142-9612(95)98822-V. PubMed DOI
Paget V, Sergent J A, Grall R, Altmeyer-Morel S, Girard H A, Petit T, Gesset C, Mermoux M, Bergonzo P, Arnault J C, et al. Nanotoxicology. 2014;8:46–56. doi: 10.3109/17435390.2013.855828. PubMed DOI
Mochalin V N, Shenderova O, Ho D, Gogotsi Y. Nat Nanotechnol. 2012;7:11–23. doi: 10.1038/nnano.2011.209. PubMed DOI
Liu K-K, Wang C-C, Cheng C-L, Chao J-I. Biomaterials. 2009;30:4249–4259. doi: 10.1016/j.biomaterials.2009.04.056. PubMed DOI
Vaijayanthimala V, Tzeng Y-K, Chang H-C, Li C-L. Nanotechnology. 2009;20:425103. doi: 10.1088/0957-4484/20/42/425103. PubMed DOI
Yan L, Yang Y, Zhang W, Chen X. Adv Mater. 2014;26:5533–5540. doi: 10.1002/adma.201305683. PubMed DOI
Lam R, Ho D. Expert Opin Drug Delivery. 2009;6:883–895. doi: 10.1517/17425240903156382. PubMed DOI
Vaijayanthimala V, Lee D K, Kim S V, Yen A, Tsai N, Ho D, Chang H-C, Shenderova O. Expert Opin Drug Delivery. 2015;12:735–749. doi: 10.1517/17425247.2015.992412. PubMed DOI
Chao J-I, Perevedentseva E, Chung P-H, Liu K-K, Cheng C-Y, Chang C-C, Cheng C-L. Biophys J. 2007;93:2199–2208. doi: 10.1529/biophysj.107.108134. PubMed DOI PMC
Aharonovich I, Neu E. Adv Opt Mater. 2014;2:911–928. doi: 10.1002/adom.201400189. DOI
Balasubramanian G, Lazariev A, Arumugam S R, Duan D-w. Curr Opin Chem Biol. 2014;20:69–77. doi: 10.1016/j.cbpa.2014.04.014. PubMed DOI
Schirhagl R, Chang K, Loretz M, Degen C L. Annu Rev Phys Chem. 2014;65:83–105. doi: 10.1146/annurev-physchem-040513-103659. PubMed DOI
Dolmatov V Yu. Russ Chem Rev. 2007;76:339–360. doi: 10.1070/RC2007v076n04ABEH003643. DOI
Ōsawa E. Pure Appl Chem. 2008;80:1365–1379. doi: 10.1351/pac200880071365. DOI
Boudou J-P, Curmi P A, Jelezko F, Wrachtrup J, Aubert P, Sennour M, Balasubramanian G, Reuter R, Thorel A, Gaffet E. Nanotechnology. 2009;20:235602. doi: 10.1088/0957-4484/20/23/235602. PubMed DOI PMC
Stehlik S, Varga M, Ledinsky M, Jirasek V, Artemenko A, Kozak H, Ondic L, Skakalova V, Argentero G, Pennycook T, et al. J Phys Chem C. 2015;119:27708–27720. doi: 10.1021/acs.jpcc.5b05259. PubMed DOI PMC
Krueger A, Stegk J, Liang Y, Lu L, Jarre G. Langmuir. 2008;24:4200–4204. doi: 10.1021/la703482v. PubMed DOI
Keremidarska M, Ganeva A, Mitev D, Hikov T, Presker R, Pramatarova L, Krasteva N. Biotechnol Biotechnol Equip. 2014;28:733–739. doi: 10.1080/13102818.2014.947704. PubMed DOI PMC
Schrand A M, Hens S A C, Shenderova O A. Crit Rev Solid State Mater Sci. 2009;34:18–74. doi: 10.1080/10408430902831987. DOI
Pichot V, Comet M, Fousson E, Baras C, Senger A, Le Normand F, Spitzer D. Diamond Relat Mater. 2008;17:13–22. doi: 10.1016/j.diamond.2007.09.011. DOI
Shenderova O, Petrov I, Walsh J, Grichko V, Grishko V, Tyler T, Cunningham G. Diamond Relat Mater. 2006;15:1799–1803. doi: 10.1016/j.diamond.2006.08.032. DOI
Puzyr' A P, Tarskikh S V, Makarskaya G V, Chiganova G A, Larionova I S, Detkov P Ya, Bondar V S. Dokl Biochem Biophys. 2002;385:201–204. doi: 10.1023/A:1019959322589. PubMed DOI
Puzyr A P, Neshumaev D A, Tarskikh S V, Makarskaia G V, Dolmatov V I, Bondar V S. Biofizika. 2005;50:101–106. PubMed
Xing Y, Xiong W, Zhu L, Ōsawa E, Hussin S, Dai L. ACS Nano. 2011;5:2376–2384. doi: 10.1021/nn200279k. PubMed DOI
Zhu Y, Li W, Zhang Y, Li J, Liang L, Zhang X, Chen N, Sun Y, Chen W, Tai R, et al. Small. 2012;8:1771–1779. doi: 10.1002/smll.201102539. PubMed DOI
Wierzbicki M, Sawosz E, Grodzik M, Hotowy A, Prasek M, Jaworski S, Sawosz F, Chwalibog A. Int J Nanomed. 2013;8:3427–3435. doi: 10.2147/IJN.S49745. PubMed DOI PMC
Xing Z, Pedersen T O, Wu X, Xue Y, Sun Y, Finne-Wistrand A, Kloss F R, Waag T, Krueger A, Steinmüller-Nethl D, et al. Tissue Eng, Part A. 2013;19:1783–1791. doi: 10.1089/ten.tea.2012.0336. PubMed DOI PMC
Eidi H, David M-O, Crépeaux G, Henry L, Joshi V, Berger M-H, Sennour M, Cadusseau J, Gherardi R K, Curmi P A. BMC Med. 2015;13:144. doi: 10.1186/s12916-015-0388-2. PubMed DOI PMC
Solarska K, Gajewska A, Bartosz G, Mitura K. J Nanosci Nanotechnol. 2012;12:5117–5121. doi: 10.1166/jnn.2012.4952. PubMed DOI
Landgraf L, Müller I, Ernst P, Schäfer M, Rosman C, Schick I, Köhler O, Oehring H, Breus V V, Basché T, et al. Beilstein J Nanotechnol. 2015;6:300–312. doi: 10.3762/bjnano.6.28. PubMed DOI PMC
Wehling J, Dringen R, Zare R N, Maas M, Rezwan K. ACS Nano. 2014;8:6475–6483. doi: 10.1021/nn502230m. PubMed DOI
Lombardi S L, editor. Nanoparticles: new research. New York, NY, U.S.A.: Nova Science Publishers; 2008.
Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C, et al. Nat Nanotechnol. 2008;3:284–288. doi: 10.1038/nnano.2008.99. PubMed DOI
Kozak H, Artemenko A, Čermák J, Švrček V, Kromka A, Rezek B. Vib Spectrosc. 2016;83:108–114. doi: 10.1016/j.vibspec.2016.01.010. DOI
Jirásek V, Čech J, Kozak H, Artemenko A, Černák M, Kromka A. Phys Status Solidi A. 2016;213:2680–2686. doi: 10.1002/pssa.201600184. DOI
Kromka A, Jira J, Stenclova P, Kriha V, Kozak H, Beranova J, Vretenar V, Skakalova V, Rezek B. Phys Status Solidi B. 2016;253:2481–2485. doi: 10.1002/pssb.201600237. DOI
Bondar O V, Saifullina D V, Shakhmaeva I I, Mavlyutova I I, Abdullin T I. ActaNaturae. 2012;4:78–81. PubMed PMC
Platel A, Carpentier R, Becart E, Mordacq G, Betbeder D, Nesslany F. J Appl Toxicol. 2016;36:434–444. doi: 10.1002/jat.3247. PubMed DOI
Carmona-Ribeiro A M, Dias de Melo Carrasco L. Int J Mol Sci. 2013;14:9906–9946. doi: 10.3390/ijms14059906. PubMed DOI PMC
Fröhlich E. Int J Nanomed. 2012;7:5577–5591. doi: 10.2147/IJN.S36111. PubMed DOI PMC
Grall R, Girard H, Saad L, Petit T, Gesset C, Combis-Schlumberger M, Paget V, Delic J, Arnault J-C, Chevillard S. Biomaterials. 2015;61:290–298. doi: 10.1016/j.biomaterials.2015.05.034. PubMed DOI
Kozak H, Remes Z, Houdkova J, Stehlik S, Kromka A, Rezek B. J Nanopart Res. 2013;15:1568. doi: 10.1007/s11051-013-1568-7. DOI
Kromka A, Čech J, Kozak H, Artemenko A, Ižák T, Čermák J, Rezek B, Černák M. Phys Status Solidi B. 2015;252:2602–2607. doi: 10.1002/pssb.201552232. DOI
Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine