Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells

. 2014 Feb ; 351 (2) : 179-86. [epub] 20140131

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24386940

In this study, the influence of the size and surface termination of diamond nanoparticles (DNPs) on their antibacterial activity against Escherichia coli and Bacillus subtilis was assessed. The average size and distribution of DNPs were determined by dynamic light scattering and X-ray diffraction techniques. The chemical composition of the DNPs studied by X-ray photoelectron spectroscopy showed that DNPs > 5 nm and oxidized particles have a higher oxygen content. The antibacterial potential of DNPs was assessed by the viable count method. In general, E. coli exhibited a higher sensitivity to DNPs than B. subtilis. However, in the presence of all the DNPs tested, the B. subtilis colonies exhibited altered size and morphology. Antibacterial activity was influenced not only by DNP concentration but also by DNP size and form. Whereas untreated 5-nm DNPs were the most effective against E. coli, the antibacterial activity of 18-50-nm DNPs was higher against B. subtilis. Transmission electron microscopy showed that DNPs interact with the bacterial surface, probably affecting vital cell functions. We propose that DNPs interfere with the permeability of the bacterial cell wall and/or membrane and hinder B. subtilis colony spreading.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Inhibition of E. coli Growth by Nanodiamond and Graphene Oxide Enhanced by Luria-Bertani Medium

. 2018 Mar 01 ; 8 (3) : . [epub] 20180301

Size and Purity Control of HPHT Nanodiamonds down to 1 nm

. 2015 Dec 10 ; 119 (49) : 27708-27720. [epub] 20150804

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...