• This record comes from PubMed

Towards to Optimal Wavelet Denoising Scheme-A Novel Spatial and Volumetric Mapping of Wavelet-Based Biomedical Data Smoothing

. 2020 Sep 16 ; 20 (18) : . [epub] 20200916

Language English Country Switzerland Media electronic

Document type Journal Article

Wavelet transformation is one of the most frequent procedures for data denoising, smoothing, decomposition, features extraction, and further related tasks. In order to perform such tasks, we need to select appropriate wavelet settings, including particular wavelet, decomposition level and other parameters, which form the wavelet transformation outputs. Selection of such parameters is a challenging area due to absence of versatile recommendation tools for suitable wavelet settings. In this paper, we propose a versatile recommendation system for prediction of suitable wavelet selection for data smoothing. The proposed system is aimed to generate spatial response matrix for selected wavelets and the decomposition levels. Such response enables the mapping of selected evaluation parameters, determining the efficacy of wavelet settings. The proposed system also enables tracking the dynamical noise influence in the context of Wavelet efficacy by using volumetric response. We provide testing on computed tomography (CT) and magnetic resonance (MR) image data and EMG signals mostly of musculoskeletal system to objectivise system usability for clinical data processing. The experimental testing is done by using evaluation parameters such is MSE (Mean Squared Error), ED (Euclidean distance) and Corr (Correlation index). We also provide the statistical analysis of the results based on Mann-Whitney test, which points out on statistically significant differences for individual Wavelets for the data corrupted with Salt and Pepper and Gaussian noise.

See more in PubMed

Goyal B., Dogra A., Agrawal S., Sohi B., Sharma A. Image Denoising Review: From Classical to State-of-the-Art Approaches. Inf. Fusion. 2020;55:220–244. doi: 10.1016/j.inffus.2019.09.003. DOI

Yang H.Y., Wang X.Y., Niu P.P., Liu Y.C. Image Denoising Using Nonsubsampled Shearlet Transform and Twin Support Vector Machines. Neural Netw. 2014;57:152–165. doi: 10.1016/j.neunet.2014.06.007. PubMed DOI

Buades A., Coll B., Morel J.M. A Review of Image Denoising Algorithms, with a New One. Multiscale Model. Simul. 2005;4:490–530. doi: 10.1137/040616024. DOI

Elad M., Aharon M. Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries. IEEE Trans. Image Process. 2006;15:3736–3745. doi: 10.1109/TIP.2006.881969. PubMed DOI

Shao L., Yan R., Li. X., Liu Y. From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms. IEEE Trans. Cybern. 2014;44:1001–1013. doi: 10.1109/TCYB.2013.2278548. PubMed DOI

Buades T., Lou Y., Morel J., Tang Z. 2009 International Workshop on Local and Non-Local Approximation in Image Processing. IEEE; Tuusula, Finland: 2009. A Note on Multi-Image Denoising; pp. 1–15.

Yan R., Shao L., Liu L., Liu Y. Natural Image Denoising Using Evolved Local Adaptive Filters. Signal Process. 2014;103:36–44. doi: 10.1016/j.sigpro.2013.11.019. DOI

Chandra T.B., Verma K. Analysis of Quantum Noise-Reducing Filters on Chest X-Ray Images: A Review. Measurement. 2020;153:107426. doi: 10.1016/j.measurement.2019.107426. DOI

Latha S., Samiappan D., Kumar R. Carotid Artery Ultrasound Image Analysis: A Review of the Literature. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2020;234:417–443. doi: 10.1177/0954411919900720. PubMed DOI

Zhang C., Du F., Zhang Y. A Brief Review of Image Restoration Techniques Based on Generative Adversarial Models. In: Park J.J., Yang L.T., Jeong Y.S., Hao F., editors. Advanced Multimedia and Ubiquitous Engineering. Volume 590. Springer; Singapore: 2020. pp. 169–175.

Yadav S.P., Yadav S. Image Fusion Using Hybrid Methods in Multimodality Medical Images. Med. Biol. Eng. Comput. 2020;58:669–687. doi: 10.1007/s11517-020-02136-6. PubMed DOI

Li S., Li F., Tang S., Xiong W. A Review of Computer-Aided Heart Sound Detection Techniques. Biomed. Res. Int. 2020;2020:1–10. doi: 10.1155/2020/5846191. PubMed DOI PMC

Charmouti B., Junoh A.K., Mashor M.Y., Ghazali N., Wahab M.A., Wan Muhamad W.Z.A., Beroual A. An Overview of the Fundamental Approaches That Yield Several Image Denoising Techniques. Telkomnika (Telecommun. Comput. Electron. Control) 2019;17:2959. doi: 10.12928/telkomnika.v17i6.11301. DOI

Vanus J., Fiedorova K., Kubicek J., Gorjani O.M., Augustynek M. Wavelet-Based Filtration Procedure for Denoising the Predicted CO2 Waveforms in Smart Home within the Internet of Things. Sensors. 2020;20:620. doi: 10.3390/s20030620. PubMed DOI PMC

Mgaga S.S., Khanyile N.P., Tapamo J.R. 2019 Open Innovations (OI) IEEE; Cape Town, South Africa: 2019. A Review of Wavelet Transform Based Techniques for Denoising Latent Fingerprint Images; pp. 57–62.

Tsagkatakis G., Aidini A., Fotiadou K., Giannopoulos M., Pentari A., Tsakalides P. Survey of Deep-Learning Approaches for Remote Sensing Observation Enhancement. Sensors. 2019;19:3929. doi: 10.3390/s19183929. PubMed DOI PMC

Kollem S., Reddy K.R.L., Rao D.S. A Review of Image Denoising and Segmentation Methods Based on Medical Images. Int. J. Mach. Learn. Comput. 2019;9:288–295. doi: 10.18178/ijmlc.2019.9.3.800. DOI

Mafi M., Martin H., Cabrerizo M., Andrian J., Barreto A., Adjouadi M. A Comprehensive Survey on Impulse and Gaussian Denoising Filters for Digital Images. Signal Process. 2019;157:236–260. doi: 10.1016/j.sigpro.2018.12.006. DOI

Bhujle H.V., Vadavadagi B.H. NLM Based Magnetic Resonance Image Denoising—A Review. Biomed. Signal Process. Control. 2019;47:252–261. doi: 10.1016/j.bspc.2018.08.031. DOI

Thanh D., Surya P., Hieu L.M. A Review on CT and X-Ray Images Denoising Methods. Informatica. 2019;43:151–159. doi: 10.31449/inf.v43i2.2179. DOI

Katiyar A., Katiyar G. Denoising of Images Using Neural Network: A Review. In: Singh S.N., Wen F., Jain M., editors. Advances in System Optimization and Control. Volume 509. Springer; Singapore: 2019. pp. 223–227.

Muhd Suberi A.A., Wan Zakaria W.N., Nazari A., Tomari R., Nik Fuad N.F., Hj Mohd M.N. Comparative Performance of Filtering Methods for Reducing Noise in Ischemic Posterior Fossa CT Images. Procedia Comput. Sci. 2019;157:55–63. doi: 10.1016/j.procs.2019.08.141. DOI

Hu Q., Hu S., Zhang F. Multi-Modality Medical Image Fusion Based on Separable Dictionary Learning and Gabor Filtering. Signal Process. Image Commun. 2020;83:115758. doi: 10.1016/j.image.2019.115758. DOI

Duarte-Salazar C.A., Castro-Ospina A.E., Becerra M.A., Delgado-Trejos E. Speckle Noise Reduction in Ultrasound Images for Improving the Metrological Evaluation of Biomedical Applications: An Overview. IEEE Access. 2020;8:15983–15999. doi: 10.1109/ACCESS.2020.2967178. DOI

Rodrigues C., Assis Peixoto Z.M., Magalhaes Freitas Ferreira F. Ultrasound Image Denoising Using Wavelet Thresholding Methods in Association with the Bilateral Filter. IEEE Lat. Am. Trans. 2019;17:1800–1807. doi: 10.1109/TLA.2019.8986417. DOI

Traverso A., Wee L., Dekker A., Gillies R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys. 2018;102:1143–1158. doi: 10.1016/j.ijrobp.2018.05.053. PubMed DOI PMC

Omer A.A., Hassan O.I., Ahmed A.I., Abdelrahman A. Denoising CT Images Using Median Based Filters: A Review; Proceedings of the 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE); Khartoum, Sudan,. 12–14 August 2018; pp. 1–6.

Singpurwalla N.D., Polson N.G., Soyer R. From Least Squares to Signal Processing and Particle Filtering. Technometrics. 2018;60:146–160. doi: 10.1080/00401706.2017.1341341. DOI

Li S., Yang Z., Li H. Statistical Evaluation of No-Reference Image Quality Assessment Metrics for Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2017;6:133. doi: 10.3390/ijgi6050133. DOI

Bhargava S., Somkuwar A. Estimation of Noise Removal Techniques in Medical Imaging Data—A Review. J. Med. Imaging Health Inf. 2016;6:875–884. doi: 10.1166/jmihi.2016.1797. DOI

Li J., Choi S., Joshi A.A., Wisnowski J.L., Leahy R.M. Temporal Non-Local Means Filtering for Studies of Intrinsic Brain Connectivity from Individual Resting fMRI. Med. Image Anal. 2020;61:101635. doi: 10.1016/j.media.2020.101635. PubMed DOI PMC

Leal N., Zurek E., Leal E. Non-Local SVD Denoising of MRI Based on Sparse Representations. Sensors. 2020;20:1536. doi: 10.3390/s20051536. PubMed DOI PMC

Obuchowicz R., Oszust M., Bielecka M., Bielecki A., Piórkowski A. Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis. Entropy. 2020;22:220. doi: 10.3390/e22020220. PubMed DOI PMC

Rajaguru H., S R S.C. Efficient Denoising Framework for Mammogram Images with a New Impulse Detector and Non-Local Means. Asian Pac. J. Cancer Prev. 2020;21:179–183. doi: 10.31557/APJCP.2020.21.1.179. PubMed DOI PMC

Liang H., Zhao S. Salt and Pepper Noise Suppression for Medical Image by Using Non-Local Homogenous Information. In: Lu H., editor. Cognitive Internet of Things: Frameworks, Tools and Applications. Volume 810. Springer International Publishing; Cham, Switzerland: 2020. pp. 189–199.

Multi-Focus Image Fusion Using Non-Local Mean Filtering and Stationary Wavelet Transform. Int. J. Innov. Technol. Explor. Eng. 2019;9:344–350. doi: 10.35940/ijitee.A4123.119119. DOI

Urciuoli A., Buono A., Nunziata F., Migliaccio M. Analysis of Local-and Non-Local Filters for Multi-Polarization SAR Coastline Extraction Applications; Proceedings of the 2019 IEEE 5th International Forum on Research and Technology for Society and Industry (RTSI); Florence, Italy. 9–12 September 2019; pp. 28–33.

Shim J., Yoon M., Lee Y. Feasibility of Fast Non Local Means Filter in Pediatric Chest X-Ray for Increasing of Pulmonary Nodule Detectability with 3D Printed Lung Nodule Phantom. J. Radiol. Prot. 2019;39:872–890. doi: 10.1088/1361-6498/ab2755. PubMed DOI

Qian Q., Wang B., Hu X., Xiang M. Coherent Markov Random Field-Based Unreliable DSM Areas Segmentation and Hierarchical Adaptive Surface Fitting for InSAR DEM Reconstruction. Sensors. 2020;20:1414. doi: 10.3390/s20051414. PubMed DOI PMC

Fan C., Wang Q. Research on Image Segmentation Method Using a Structure-Preserving Region Model-Based MRF. Clust. Comput. 2019;22:15329–15334. doi: 10.1007/s10586-018-2592-2. DOI

Li D., Yan S., Cai X., Cao Y., Wang S. An Integrated Image Filter for Enhancing Change Detection Results. IEEE Access. 2019;7:91034–91051. doi: 10.1109/ACCESS.2019.2927255. DOI

Pfister L., Bresler Y. Learning Filter Bank Sparsifying Transforms. IEEE Trans. Signal Process. 2019;67:504–519. doi: 10.1109/TSP.2018.2883021. DOI

Liu Z., Ma Y., Fan F., Ma J. Nonuniformity Correction Based on Adaptive Sparse Representation Using Joint Local and Global Constraints Based Learning Rate. IEEE Access. 2018;6:10822–10839. doi: 10.1109/ACCESS.2018.2799606. DOI

Vafa A.P.M.Q., Karimi P., Khavasi A. Recent Advances in Spatial Analog Optical Computing; Proceedings of the 2018 Fifth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT); Tehran, Iran. 18–20 December 2018; pp. 6–11.

Cheng J.Y., Hanneman K., Zhang T., Alley M.T., Lai P., Tamir J.I., Uecker M., Pauly J.M., Lustig M., Vasanawala S.S. Comprehensive Motion-Compensated Highly Accelerated 4D Flow MRI with Ferumoxytol Enhancement for Pediatric Congenital Heart Disease: Motion-Compensated Accelerated 4D Flow. J. Magn. Reson. Imaging. 2016;43:1355–1368. doi: 10.1002/jmri.25106. PubMed DOI PMC

Parchami M., Zhu W.P., Champagne B., Plourde E. Recent Developments in Speech Enhancement in the Short-Time Fourier Transform Domain. IEEE Circuits Syst. Mag. 2016;16:45–77. doi: 10.1109/MCAS.2016.2583681. DOI

Bhongade S., Kourav D., Rai R.K., Sontakke T. Review on Image Denoising Based on Contourlet Domain Using Adaptive Window Algorithm; Proceedings of the 2013 International Conference on Machine Intelligence and Research Advancement; Katra, India. 21–23 December 2013; pp. 412–415.

Argenti F., Lapini A., Bianchi T., Alparone L. A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images. IEEE Geosci. Remote Sens. Mag. 2013;1:6–35. doi: 10.1109/MGRS.2013.2277512. DOI

Kamble V.M., Parlewar P., Keskar A.G., Bhurchandi K.M. Performance Evaluation of Wavelet, Ridgelet, Curvelet and Contourlet Transforms Based Techniques for Digital Image Denoising. Artif. Intell. Rev. 2016;45:509–533. doi: 10.1007/s10462-015-9453-7. DOI

Jain P., Tyagi V. A Survey of Edge-Preserving Image Denoising Methods. Inf. Syst. Front. 2016;18:159–170. doi: 10.1007/s10796-014-9527-0. DOI

Yin H., Gong Y., Qiu G. Fast and Efficient Implementation of Image Filtering Using a Side Window Convolutional Neural Network. Signal Process. 2020;176:107717. doi: 10.1016/j.sigpro.2020.107717. DOI

Sun H., He Z., Zi Y., Yuan J., Wang X., Chen J., He S. Multiwavelet Transform and Its Applications in Mechanical Fault Diagnosis—A Review. Mech. Syst. Signal Process. 2014;43:1–24. doi: 10.1016/j.ymssp.2013.09.015. DOI

Mohan J., Krishnaveni V., Guo Y. A Survey on the Magnetic Resonance Image Denoising Methods. Biomed. Signal Process. Control. 2014;9:56–69. doi: 10.1016/j.bspc.2013.10.007. DOI

Ebadi L., Shafri H.Z.M., Mansor S.B., Ashurov R. A Review of Applying Second-Generation Wavelets for Noise Removal from Remote Sensing Data. Environ. Earth Sci. 2013;70:2679–2690. doi: 10.1007/s12665-013-2325-z. DOI

Meziani F., Debbal S.M., Atbi A. Analysis of Phonocardiogram Signals Using Wavelet Transform. J. Med. Eng. Technol. 2012;36:283–302. doi: 10.3109/03091902.2012.684830. PubMed DOI

Sapsanis C., Georgoulas G., Tzes A., Lymberopoulos D. Improving EMG Based Classification of Basic Hand Movements Using EMD; Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Osaka, Japan. 3–7 July 2013; pp. 5754–5757. PubMed

Donoho D. De-Noising by Soft-Thresholding. IEEE Trans. Inf. Theory. 1995;41:613–627. doi: 10.1109/18.382009. DOI

Agarwal S.P., Singh O., Nagaria D. Analysis and Comparison of Wavelet Transforms For Denoising MRI Image. Biomed. Pharmacol. J. 2017;10:831–836. doi: 10.13005/bpj/1174. DOI

Zotin A., Simonov K., Kapsargin F., Cherepanova T., Kruglyakov A., Cadena L. Techniques for Medical Images Processing Using Shearlet Transform and Color Coding. In: Favorskaya M.N., Jain L.C., editors. Computer Vision in Control Systems-4. Volume 136. Springer International Publishing; Cham, Switzerland: 2018. pp. 223–259.

Aja-Fernández S., Vegas-Sánchez-Ferrero G. Statistical Analysis of Noise in MRI. Springer International Publishing; Cham, Switzerland: 2016. Noise Filtering in MRI; pp. 89–119.

Gai S., Zhang B., Yang C., Yu L. Speckle Noise Reduction in Medical Ultrasound Image Using Monogenic Wavelet and Laplace Mixture Distribution. Digit. Signal Process. 2018;72:192–207. doi: 10.1016/j.dsp.2017.10.006. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...