Towards to Optimal Wavelet Denoising Scheme-A Novel Spatial and Volumetric Mapping of Wavelet-Based Biomedical Data Smoothing
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32947977
PubMed Central
PMC7571247
DOI
10.3390/s20185301
PII: s20185301
Knihovny.cz E-resources
- Keywords
- Coiflet wavelet, Daubechies wavelet, Symlet wavelet, spatial and volumetric modeling, wavelet transformation,
- MeSH
- Algorithms * MeSH
- Electromyography * MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Normal Distribution MeSH
- Tomography, X-Ray Computed * MeSH
- Wavelet Analysis * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Wavelet transformation is one of the most frequent procedures for data denoising, smoothing, decomposition, features extraction, and further related tasks. In order to perform such tasks, we need to select appropriate wavelet settings, including particular wavelet, decomposition level and other parameters, which form the wavelet transformation outputs. Selection of such parameters is a challenging area due to absence of versatile recommendation tools for suitable wavelet settings. In this paper, we propose a versatile recommendation system for prediction of suitable wavelet selection for data smoothing. The proposed system is aimed to generate spatial response matrix for selected wavelets and the decomposition levels. Such response enables the mapping of selected evaluation parameters, determining the efficacy of wavelet settings. The proposed system also enables tracking the dynamical noise influence in the context of Wavelet efficacy by using volumetric response. We provide testing on computed tomography (CT) and magnetic resonance (MR) image data and EMG signals mostly of musculoskeletal system to objectivise system usability for clinical data processing. The experimental testing is done by using evaluation parameters such is MSE (Mean Squared Error), ED (Euclidean distance) and Corr (Correlation index). We also provide the statistical analysis of the results based on Mann-Whitney test, which points out on statistically significant differences for individual Wavelets for the data corrupted with Salt and Pepper and Gaussian noise.
See more in PubMed
Goyal B., Dogra A., Agrawal S., Sohi B., Sharma A. Image Denoising Review: From Classical to State-of-the-Art Approaches. Inf. Fusion. 2020;55:220–244. doi: 10.1016/j.inffus.2019.09.003. DOI
Yang H.Y., Wang X.Y., Niu P.P., Liu Y.C. Image Denoising Using Nonsubsampled Shearlet Transform and Twin Support Vector Machines. Neural Netw. 2014;57:152–165. doi: 10.1016/j.neunet.2014.06.007. PubMed DOI
Buades A., Coll B., Morel J.M. A Review of Image Denoising Algorithms, with a New One. Multiscale Model. Simul. 2005;4:490–530. doi: 10.1137/040616024. DOI
Elad M., Aharon M. Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries. IEEE Trans. Image Process. 2006;15:3736–3745. doi: 10.1109/TIP.2006.881969. PubMed DOI
Shao L., Yan R., Li. X., Liu Y. From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms. IEEE Trans. Cybern. 2014;44:1001–1013. doi: 10.1109/TCYB.2013.2278548. PubMed DOI
Buades T., Lou Y., Morel J., Tang Z. 2009 International Workshop on Local and Non-Local Approximation in Image Processing. IEEE; Tuusula, Finland: 2009. A Note on Multi-Image Denoising; pp. 1–15.
Yan R., Shao L., Liu L., Liu Y. Natural Image Denoising Using Evolved Local Adaptive Filters. Signal Process. 2014;103:36–44. doi: 10.1016/j.sigpro.2013.11.019. DOI
Chandra T.B., Verma K. Analysis of Quantum Noise-Reducing Filters on Chest X-Ray Images: A Review. Measurement. 2020;153:107426. doi: 10.1016/j.measurement.2019.107426. DOI
Latha S., Samiappan D., Kumar R. Carotid Artery Ultrasound Image Analysis: A Review of the Literature. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2020;234:417–443. doi: 10.1177/0954411919900720. PubMed DOI
Zhang C., Du F., Zhang Y. A Brief Review of Image Restoration Techniques Based on Generative Adversarial Models. In: Park J.J., Yang L.T., Jeong Y.S., Hao F., editors. Advanced Multimedia and Ubiquitous Engineering. Volume 590. Springer; Singapore: 2020. pp. 169–175.
Yadav S.P., Yadav S. Image Fusion Using Hybrid Methods in Multimodality Medical Images. Med. Biol. Eng. Comput. 2020;58:669–687. doi: 10.1007/s11517-020-02136-6. PubMed DOI
Li S., Li F., Tang S., Xiong W. A Review of Computer-Aided Heart Sound Detection Techniques. Biomed. Res. Int. 2020;2020:1–10. doi: 10.1155/2020/5846191. PubMed DOI PMC
Charmouti B., Junoh A.K., Mashor M.Y., Ghazali N., Wahab M.A., Wan Muhamad W.Z.A., Beroual A. An Overview of the Fundamental Approaches That Yield Several Image Denoising Techniques. Telkomnika (Telecommun. Comput. Electron. Control) 2019;17:2959. doi: 10.12928/telkomnika.v17i6.11301. DOI
Vanus J., Fiedorova K., Kubicek J., Gorjani O.M., Augustynek M. Wavelet-Based Filtration Procedure for Denoising the Predicted CO2 Waveforms in Smart Home within the Internet of Things. Sensors. 2020;20:620. doi: 10.3390/s20030620. PubMed DOI PMC
Mgaga S.S., Khanyile N.P., Tapamo J.R. 2019 Open Innovations (OI) IEEE; Cape Town, South Africa: 2019. A Review of Wavelet Transform Based Techniques for Denoising Latent Fingerprint Images; pp. 57–62.
Tsagkatakis G., Aidini A., Fotiadou K., Giannopoulos M., Pentari A., Tsakalides P. Survey of Deep-Learning Approaches for Remote Sensing Observation Enhancement. Sensors. 2019;19:3929. doi: 10.3390/s19183929. PubMed DOI PMC
Kollem S., Reddy K.R.L., Rao D.S. A Review of Image Denoising and Segmentation Methods Based on Medical Images. Int. J. Mach. Learn. Comput. 2019;9:288–295. doi: 10.18178/ijmlc.2019.9.3.800. DOI
Mafi M., Martin H., Cabrerizo M., Andrian J., Barreto A., Adjouadi M. A Comprehensive Survey on Impulse and Gaussian Denoising Filters for Digital Images. Signal Process. 2019;157:236–260. doi: 10.1016/j.sigpro.2018.12.006. DOI
Bhujle H.V., Vadavadagi B.H. NLM Based Magnetic Resonance Image Denoising—A Review. Biomed. Signal Process. Control. 2019;47:252–261. doi: 10.1016/j.bspc.2018.08.031. DOI
Thanh D., Surya P., Hieu L.M. A Review on CT and X-Ray Images Denoising Methods. Informatica. 2019;43:151–159. doi: 10.31449/inf.v43i2.2179. DOI
Katiyar A., Katiyar G. Denoising of Images Using Neural Network: A Review. In: Singh S.N., Wen F., Jain M., editors. Advances in System Optimization and Control. Volume 509. Springer; Singapore: 2019. pp. 223–227.
Muhd Suberi A.A., Wan Zakaria W.N., Nazari A., Tomari R., Nik Fuad N.F., Hj Mohd M.N. Comparative Performance of Filtering Methods for Reducing Noise in Ischemic Posterior Fossa CT Images. Procedia Comput. Sci. 2019;157:55–63. doi: 10.1016/j.procs.2019.08.141. DOI
Hu Q., Hu S., Zhang F. Multi-Modality Medical Image Fusion Based on Separable Dictionary Learning and Gabor Filtering. Signal Process. Image Commun. 2020;83:115758. doi: 10.1016/j.image.2019.115758. DOI
Duarte-Salazar C.A., Castro-Ospina A.E., Becerra M.A., Delgado-Trejos E. Speckle Noise Reduction in Ultrasound Images for Improving the Metrological Evaluation of Biomedical Applications: An Overview. IEEE Access. 2020;8:15983–15999. doi: 10.1109/ACCESS.2020.2967178. DOI
Rodrigues C., Assis Peixoto Z.M., Magalhaes Freitas Ferreira F. Ultrasound Image Denoising Using Wavelet Thresholding Methods in Association with the Bilateral Filter. IEEE Lat. Am. Trans. 2019;17:1800–1807. doi: 10.1109/TLA.2019.8986417. DOI
Traverso A., Wee L., Dekker A., Gillies R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys. 2018;102:1143–1158. doi: 10.1016/j.ijrobp.2018.05.053. PubMed DOI PMC
Omer A.A., Hassan O.I., Ahmed A.I., Abdelrahman A. Denoising CT Images Using Median Based Filters: A Review; Proceedings of the 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE); Khartoum, Sudan,. 12–14 August 2018; pp. 1–6.
Singpurwalla N.D., Polson N.G., Soyer R. From Least Squares to Signal Processing and Particle Filtering. Technometrics. 2018;60:146–160. doi: 10.1080/00401706.2017.1341341. DOI
Li S., Yang Z., Li H. Statistical Evaluation of No-Reference Image Quality Assessment Metrics for Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2017;6:133. doi: 10.3390/ijgi6050133. DOI
Bhargava S., Somkuwar A. Estimation of Noise Removal Techniques in Medical Imaging Data—A Review. J. Med. Imaging Health Inf. 2016;6:875–884. doi: 10.1166/jmihi.2016.1797. DOI
Li J., Choi S., Joshi A.A., Wisnowski J.L., Leahy R.M. Temporal Non-Local Means Filtering for Studies of Intrinsic Brain Connectivity from Individual Resting fMRI. Med. Image Anal. 2020;61:101635. doi: 10.1016/j.media.2020.101635. PubMed DOI PMC
Leal N., Zurek E., Leal E. Non-Local SVD Denoising of MRI Based on Sparse Representations. Sensors. 2020;20:1536. doi: 10.3390/s20051536. PubMed DOI PMC
Obuchowicz R., Oszust M., Bielecka M., Bielecki A., Piórkowski A. Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis. Entropy. 2020;22:220. doi: 10.3390/e22020220. PubMed DOI PMC
Rajaguru H., S R S.C. Efficient Denoising Framework for Mammogram Images with a New Impulse Detector and Non-Local Means. Asian Pac. J. Cancer Prev. 2020;21:179–183. doi: 10.31557/APJCP.2020.21.1.179. PubMed DOI PMC
Liang H., Zhao S. Salt and Pepper Noise Suppression for Medical Image by Using Non-Local Homogenous Information. In: Lu H., editor. Cognitive Internet of Things: Frameworks, Tools and Applications. Volume 810. Springer International Publishing; Cham, Switzerland: 2020. pp. 189–199.
Multi-Focus Image Fusion Using Non-Local Mean Filtering and Stationary Wavelet Transform. Int. J. Innov. Technol. Explor. Eng. 2019;9:344–350. doi: 10.35940/ijitee.A4123.119119. DOI
Urciuoli A., Buono A., Nunziata F., Migliaccio M. Analysis of Local-and Non-Local Filters for Multi-Polarization SAR Coastline Extraction Applications; Proceedings of the 2019 IEEE 5th International Forum on Research and Technology for Society and Industry (RTSI); Florence, Italy. 9–12 September 2019; pp. 28–33.
Shim J., Yoon M., Lee Y. Feasibility of Fast Non Local Means Filter in Pediatric Chest X-Ray for Increasing of Pulmonary Nodule Detectability with 3D Printed Lung Nodule Phantom. J. Radiol. Prot. 2019;39:872–890. doi: 10.1088/1361-6498/ab2755. PubMed DOI
Qian Q., Wang B., Hu X., Xiang M. Coherent Markov Random Field-Based Unreliable DSM Areas Segmentation and Hierarchical Adaptive Surface Fitting for InSAR DEM Reconstruction. Sensors. 2020;20:1414. doi: 10.3390/s20051414. PubMed DOI PMC
Fan C., Wang Q. Research on Image Segmentation Method Using a Structure-Preserving Region Model-Based MRF. Clust. Comput. 2019;22:15329–15334. doi: 10.1007/s10586-018-2592-2. DOI
Li D., Yan S., Cai X., Cao Y., Wang S. An Integrated Image Filter for Enhancing Change Detection Results. IEEE Access. 2019;7:91034–91051. doi: 10.1109/ACCESS.2019.2927255. DOI
Pfister L., Bresler Y. Learning Filter Bank Sparsifying Transforms. IEEE Trans. Signal Process. 2019;67:504–519. doi: 10.1109/TSP.2018.2883021. DOI
Liu Z., Ma Y., Fan F., Ma J. Nonuniformity Correction Based on Adaptive Sparse Representation Using Joint Local and Global Constraints Based Learning Rate. IEEE Access. 2018;6:10822–10839. doi: 10.1109/ACCESS.2018.2799606. DOI
Vafa A.P.M.Q., Karimi P., Khavasi A. Recent Advances in Spatial Analog Optical Computing; Proceedings of the 2018 Fifth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT); Tehran, Iran. 18–20 December 2018; pp. 6–11.
Cheng J.Y., Hanneman K., Zhang T., Alley M.T., Lai P., Tamir J.I., Uecker M., Pauly J.M., Lustig M., Vasanawala S.S. Comprehensive Motion-Compensated Highly Accelerated 4D Flow MRI with Ferumoxytol Enhancement for Pediatric Congenital Heart Disease: Motion-Compensated Accelerated 4D Flow. J. Magn. Reson. Imaging. 2016;43:1355–1368. doi: 10.1002/jmri.25106. PubMed DOI PMC
Parchami M., Zhu W.P., Champagne B., Plourde E. Recent Developments in Speech Enhancement in the Short-Time Fourier Transform Domain. IEEE Circuits Syst. Mag. 2016;16:45–77. doi: 10.1109/MCAS.2016.2583681. DOI
Bhongade S., Kourav D., Rai R.K., Sontakke T. Review on Image Denoising Based on Contourlet Domain Using Adaptive Window Algorithm; Proceedings of the 2013 International Conference on Machine Intelligence and Research Advancement; Katra, India. 21–23 December 2013; pp. 412–415.
Argenti F., Lapini A., Bianchi T., Alparone L. A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images. IEEE Geosci. Remote Sens. Mag. 2013;1:6–35. doi: 10.1109/MGRS.2013.2277512. DOI
Kamble V.M., Parlewar P., Keskar A.G., Bhurchandi K.M. Performance Evaluation of Wavelet, Ridgelet, Curvelet and Contourlet Transforms Based Techniques for Digital Image Denoising. Artif. Intell. Rev. 2016;45:509–533. doi: 10.1007/s10462-015-9453-7. DOI
Jain P., Tyagi V. A Survey of Edge-Preserving Image Denoising Methods. Inf. Syst. Front. 2016;18:159–170. doi: 10.1007/s10796-014-9527-0. DOI
Yin H., Gong Y., Qiu G. Fast and Efficient Implementation of Image Filtering Using a Side Window Convolutional Neural Network. Signal Process. 2020;176:107717. doi: 10.1016/j.sigpro.2020.107717. DOI
Sun H., He Z., Zi Y., Yuan J., Wang X., Chen J., He S. Multiwavelet Transform and Its Applications in Mechanical Fault Diagnosis—A Review. Mech. Syst. Signal Process. 2014;43:1–24. doi: 10.1016/j.ymssp.2013.09.015. DOI
Mohan J., Krishnaveni V., Guo Y. A Survey on the Magnetic Resonance Image Denoising Methods. Biomed. Signal Process. Control. 2014;9:56–69. doi: 10.1016/j.bspc.2013.10.007. DOI
Ebadi L., Shafri H.Z.M., Mansor S.B., Ashurov R. A Review of Applying Second-Generation Wavelets for Noise Removal from Remote Sensing Data. Environ. Earth Sci. 2013;70:2679–2690. doi: 10.1007/s12665-013-2325-z. DOI
Meziani F., Debbal S.M., Atbi A. Analysis of Phonocardiogram Signals Using Wavelet Transform. J. Med. Eng. Technol. 2012;36:283–302. doi: 10.3109/03091902.2012.684830. PubMed DOI
Sapsanis C., Georgoulas G., Tzes A., Lymberopoulos D. Improving EMG Based Classification of Basic Hand Movements Using EMD; Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Osaka, Japan. 3–7 July 2013; pp. 5754–5757. PubMed
Donoho D. De-Noising by Soft-Thresholding. IEEE Trans. Inf. Theory. 1995;41:613–627. doi: 10.1109/18.382009. DOI
Agarwal S.P., Singh O., Nagaria D. Analysis and Comparison of Wavelet Transforms For Denoising MRI Image. Biomed. Pharmacol. J. 2017;10:831–836. doi: 10.13005/bpj/1174. DOI
Zotin A., Simonov K., Kapsargin F., Cherepanova T., Kruglyakov A., Cadena L. Techniques for Medical Images Processing Using Shearlet Transform and Color Coding. In: Favorskaya M.N., Jain L.C., editors. Computer Vision in Control Systems-4. Volume 136. Springer International Publishing; Cham, Switzerland: 2018. pp. 223–259.
Aja-Fernández S., Vegas-Sánchez-Ferrero G. Statistical Analysis of Noise in MRI. Springer International Publishing; Cham, Switzerland: 2016. Noise Filtering in MRI; pp. 89–119.
Gai S., Zhang B., Yang C., Yu L. Speckle Noise Reduction in Medical Ultrasound Image Using Monogenic Wavelet and Laplace Mixture Distribution. Digit. Signal Process. 2018;72:192–207. doi: 10.1016/j.dsp.2017.10.006. DOI
Modern Trends and Applications of Intelligent Methods in Biomedical Signal and Image Processing