• This record comes from PubMed

Wavelet-Based Filtration Procedure for Denoising the Predicted CO2 Waveforms in Smart Home within the Internet of Things

. 2020 Jan 22 ; 20 (3) : . [epub] 20200122

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/16_019/0000867 European Regional Development Fund

The operating cost minimization of smart homes can be achieved with the optimization of the management of the building's technical functions by determination of the current occupancy status of the individual monitored spaces of a smart home. To respect the privacy of the smart home residents, indirect methods (without using cameras and microphones) are possible for occupancy recognition of space in smart homes. This article describes a newly proposed indirect method to increase the accuracy of the occupancy recognition of monitored spaces of smart homes. The proposed procedure uses the prediction of the course of CO2 concentration from operationally measured quantities (temperature indoor and relative humidity indoor) using artificial neural networks with a multilayer perceptron algorithm. The mathematical wavelet transformation method is used for additive noise canceling from the predicted course of the CO2 concentration signal with an objective increase accuracy of the prediction. The calculated accuracy of CO2 concentration waveform prediction in the additive noise-canceling application was higher than 98% in selected experiments.

See more in PubMed

Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018. [(accessed on 5 December 2019)]; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0844&from=CS.

Vanus J., Machac J., Martinek R., Bilik P., Zidek J., Nedoma J., Fajkus M. Human-Centric Computing and Information Sciences. Springer; Berlin, Germany: 2018. The design of an indirect method for the human presence monitoring in the intelligent building. ISSN 2192-1962. DOI

Vanus J., Belesova J., Martinek R., Nedoma J., Fajkus M., Bilik P., Zidek J. Human-Centric Computing and Information Sciences. Springer; Berlin, Germany: 2017. Monitoring of the daily living activities in smart home care. ISSN 2192-1962. DOI

Bastos D., Shackleton M., El-Moussa F. Internet of Things: A Survey of Technologies and Security Risks in Smart Home and City Environments; Proceedings of the Living in the Internet of Things: Cybersecurity of the IoT—2018; London, UK. 28–29 March 2018; pp. 1–7.

Asensio J., Criado J., Padilla N., Iribarne L. Future Generation Computer Systems. ScienceDirect; Amsterdam, The Netherlands: 2017. Emulating home automation installations through component-based web technology. ISSN 0167-739X. DOI

Petnik J., Vanus J. Design of Smart Home Implementation within IoT with Natural Language Interface. IFAC-PapersOnLine. 2018;51:174–179. doi: 10.1016/j.ifacol.2018.07.149. DOI

Dwivedi A.D., Srivastava G., Dhar S., Singh R. A decentralized privacy-preserving healthcare blockchain for iot. Sensors. 2019;19:326. doi: 10.3390/s19020326. PubMed DOI PMC

Polap D. Analysis of skin marks through the use of intelligent things. IEEE Access. 2019;7:149355–149363. doi: 10.1109/ACCESS.2019.2947354. DOI

Winnicka A., Kęsik K., Połap D., Woźniak M., Marszałek Z. A Multi-Agent Gamification System for Managing Smart Homes. Sensors. 2019;19:1249. doi: 10.3390/s19051249. PubMed DOI PMC

Vanus J., Koziorek J. Employment of Dynamic Time Warping method for monitoring states in Smart Home; Proceedings of the 4th International Workshop on Computer Science and Engineering-Winter, WCSE 2014; Hong Kong. 26–28 December 2014.

Vanus J. The use of the adaptive noise cancellation for voice communication with the control system. Int. J. Comput. Sci. Appl. 2011;8:54–70.

Vanus J., Stýskala V. Application of optimal settings of the LMS adaptive filter for speech signal processing. Proceedings of the International Multiconference on Computer Science and Information Technology, Wisla, Poland, 18–20 October 2010. Volume 5:767–774.

Vaňuš J., Stýskala V. Application of variations of the LMS adaptive filter for voice communications with control system. Teh. Vjesn. 2011;18:555–580.

Vanus J., Belesova J., Martinek R., Bilik P., Zidek J., Koval L. Development of Software Tool for Operational and Technical Functions Control in the Smart Home with KNX technology. IFAC-PapersOnLine. 2016;49:431–436. doi: 10.1016/j.ifacol.2016.12.088. DOI

Vanus J., Fajkus M., Martinek R., Zabka S., Stolarik M. Optical Sensors 2019, Proceedings of the SPIE Optics + Optoelectronics, Prague, Czech Republic, 11 April 2019. Spie-Int Soc Optical Engineering; Bellingham, WA, USA: 2019. Smart home room‘s occupancy monitoring using fiber bragg grating sensor.

Vanus J., Martinek R., Nedoma J., Fajkus M., Cvejn D., Valicek P., Novak T. Utilization of the lms algorithm to filter the predicted course by means of neural networks for monitoring the occupancy of rooms in an intelligent administrative building. IFAC Papersonline. 2018;51:378–383. doi: 10.1016/j.ifacol.2018.07.183. DOI

Vanus J., Martinek R., Bilik P., Zídek J., Dohnalek P., Gajdos P. New method for accurate prediction of CO2 in the Smart Home; Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings; Taipei, Taiwan. 23–26 May 2016; pp. 1–5.

Vanus J., Krestanova A., Kubicek J., Gorjani O., Penhaker M., Oczka D. Using Wavelet Transformation for Prediction CO2 in Smart Home Care Within IoT for Monitor Activities of Daily Living; Proceedings of the 11th International Conference on Computational Collective Intelligence; Hendaye, France. 4–6 September 2019.

Vanus J., Kubicek J., Gorjani O.M., Koziorek J. Using the IBM SPSS SW tool with wavelet transformation for CO2 prediction within IoT in smart home care. Sensors. 2019;19:1407. doi: 10.3390/s19061407. PubMed DOI PMC

Chen W., Bai M., Song H. Seismic noise attenuation based on waveform classification. J. Appl. Geophys. 2019;167:118–127. doi: 10.1016/j.jappgeo.2019.05.014. DOI

Deo R.N., Cull J.P. Denoising time-domain induced polarisation data using wavelet techniques. Explor. Geophys. 2016;47:108–114. doi: 10.1071/EG13077. DOI

Dolabdjian C., Fadili J., Leyva E.H. Classical low-pass filter and real-time wavelet-based denoising technique implemented on a DSP: A comparison study. Eur. Phys. J. Appl. Phys. 2002;20:135–140. doi: 10.1051/epjap:2002083. DOI

Kang S., Zhang H., Kang Y. Application of signal processing and neural network for transient waveform recognition in power system; Proceedings of the 2010 Chinese Control and Decision Conference; Xuzhou, China. 26–28 May 2010; pp. 2481–2484.

Rahman M.A., Rashid M.A., Ahmad M. Selecting the optimal conditions of Savitzky–Golay filter for fNIRS signal. Biocybern. Biomed. Eng. 2019;39:624–637. doi: 10.1016/j.bbe.2019.06.004. DOI

Bridwell D.A., Cavanagh J.F., Collins A.G.E., Nunez M.D., Srinivasan R., Stober S., Calhoun V.D. Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior. Front. Hum. Neurosci. 2018;12:106. doi: 10.3389/fnhum.2018.00106. PubMed DOI PMC

Cohen M.X. Comparison of linear spatial filters for identifying oscillatory activity in multichannel data. J. Neurosci. Methods. 2017;278:1–12. doi: 10.1016/j.jneumeth.2016.12.016. PubMed DOI

Parameshwaran D., Subramaniyam N.P., Thiagarajan T.C. Waveform complexity: A new metric for EEG analysis. J. Neurosci. Methods. 2019;325:108313. doi: 10.1016/j.jneumeth.2019.108313. PubMed DOI

Varshavskiy I.E., Krasnova A.I., Polivanov V.V. Efficiency Estimation of the Noise Digital Filtering Algorithms; Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus); Saint Petersburg/Moscow, Russia. 28–31 January 2019.

Su Z., Ye L. An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network. Smart Mater. Struct. 2004;13:957–969. doi: 10.1088/0964-1726/13/4/034. DOI

Vivier J., Mehablia A. New Artificial Network Approach for Membrane Filtration Simulation. Chem. Biochem. Eng. Q. 2012;26:241–248.

Wei A.-L.W., Zeng G.M., Huang G.H., Liang J., Li X.D. Modeling of a permeate flux of cross-flow membrane filtration of colloidal suspensions: A wavelet network approach. Int. J. Environ. Sci. Technol. 2009;6:395–406. doi: 10.1007/BF03326078. DOI

Vanus J., Gorjani O.M., Bilik P. Novel Proposal for Prediction of CO2 Course and Occupancy Recognition in Intelligent Buildings within IoT. Energies. 2019;12:4541. doi: 10.3390/en12234541. DOI

Rouse M. Predictive Modeling. [(accessed on 1 November 2019)]; Available online: https://searchenterpriseai.techtarget.com/definition/predictive-modeling.

Han J., Pei J., Kamber M. Data Mining: Concepts and Techniques. Elsevier; Amsterdam, The Netherlands: 2011.

Moosavi S.R., Wood D.A., Ahmadi M.A., Choubineh A. ANN-Based Prediction of Laboratory-Scale Performance of CO2-Foam Flooding for Improving Oil Recovery. Nat. Resour. Res. 2019;28:1619–1637. doi: 10.1007/s11053-019-09459-8. DOI

Zarei T., Behyad R. Predicting the water production of a solar seawater greenhouse desalination unit using multi-layer perceptron model. Sol. Energy. 2019;177:595–603. doi: 10.1016/j.solener.2018.11.059. DOI

Yilmaz I., Kaynar O. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst. Appl. 2011;38:5958–5966. doi: 10.1016/j.eswa.2010.11.027. DOI

Heidari E., Sobati M.A., Movahedirad S. Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN) Chemom. Intell. Lab. Syst. 2016;155:73–85. doi: 10.1016/j.chemolab.2016.03.031. DOI

Abdi-Khanghah M., Bemani A., Naserzadeh Z., Zhang Z. Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN. J. CO2 Util. 2018;25:108–119. doi: 10.1016/j.jcou.2018.03.008. DOI

Ahmed S.A., Dey S., Sarma K.K. Image texture classification using Artificial Neural Network (ANN); Proceedings of the 2011 2nd National Conference on Emerging Trends and Applications in Computer Science; Shillong, India. 4–5 March 2011; pp. 1–4.

Zarei F., Baghban A. Phase behavior modelling of asphaltene precipitation utilizing MLP-ANN approach. Pet. Sci. Technol. 2017;35:2009–2015. doi: 10.1080/10916466.2017.1377233. DOI

Behrang M., Assareh E., Ghanbarzadeh A., Noghrehabadi A. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Sol. Energy. 2010;84:1468–1480. doi: 10.1016/j.solener.2010.05.009. DOI

Haykin S. Neural Networks: A Comprehensive Foundation. 2nd ed. Macmillan College Publishing; New York, NY, USA: 1998.

Ripley B.D. Pattern Recognition and Neural Networks. Cambridge University Press (CUP); Cambridge, UK: 1996.

Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer; New York, NY, USA: 2009.

Rosenblatt F. Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Defense Technical Information Center (DTIC); Baer Fort, VA, USA: 1961.

Rumelhart D.E., Hinton G.E., Williams R.J. Learning Internal Representations by Error Propagation. The MIT Press; Cambridge, MA, USA: 1985.

Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989;2:303–314. doi: 10.1007/BF02551274. DOI

IBM SPSS Modeler 18 Algorithms Guide. [(accessed on 1 November 2019)]; Available online: Ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/AlgorithmsGuide.pdf.

Islam M.R., Rahim M.A., Islam M.R., Shin J. Genetic algorithm based optimal feature selection extracted by time-frequency analysis for enhanced sleep disorder diagnosis using eeg signal; Proceedings of the SAI Intelligent Systems Conference 2019; London, UK. 5–6 September 2019.

Strömbergsson D., Marklund P., Berglund K., Saari J., Thomson A. Mother wavelet selection in the discrete wavelet transform for condition monitoring of wind turbine drivetrain bearings. Wind Energy. 2019;22:1581–1592. doi: 10.1002/we.2390. DOI

Chen H., Fan Y. Identification and wavelet estimation of weighted ATE under discontinuous and kink incentive assignment mechanisms. J. Econom. 2019;212:476–502. doi: 10.1016/j.jeconom.2019.05.015. DOI

Cohen M.X. A better way to define and describe Morlet wavelets for time-frequency analysis. NeuroImage. 2019;199:81–86. doi: 10.1016/j.neuroimage.2019.05.048. PubMed DOI

Feli M. Abdali-Mohammadi, F. 12 lead electrocardiography signals compression by a new genetic programming based mathematical modeling algorithm. Biomed. Signal Process. Control. 2019;54:101596. doi: 10.1016/j.bspc.2019.101596. DOI

Liu J., Zhang C., Zhu Y., Ristaniemi T., Parviainen T., Cong F. Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition. Comput. Methods Programs Biomed. 2020;184:105120. doi: 10.1016/j.cmpb.2019.105120. PubMed DOI

Feng Z., Yu X., Zhang D., Liang M. Generalized adaptive mode decomposition for nonstationary signal analysis of rotating machinery: Principle and applications. Mech. Syst. Signal Process. 2020;136:106530. doi: 10.1016/j.ymssp.2019.106530. DOI

Babichev S., Sharko O., Sharko A., Mikhalyov O. Soft Filtering of Acoustic Emission Signals Based on the Complex Use of Huang Transform and Wavelet Analysis. Adv. Intell. Syst. Comput. 2020;1020:3–19.

Hasan F.S. Chaotic signals denoising using empirical mode decomposition inspired by multivariate denoising. Int. J. Electr. Comput. Eng. 2020;10:1352–1358.

Lehmann E.L., Casella G. Theory of Point Estimation. Springer Science & Business Media; Berlin, Germany: 2006.

Ijiri Y. The linear aggregation coefficient as the dual of the linear correlation coefficient. Econom. J. Econom. Soc. 1968;36:252–259. doi: 10.2307/1907488. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...