Telemedicine is an emerging development in the healthcare domain, where the Internet of Things (IoT) fiber optics technology assists telemedicine applications to improve overall digital healthcare performances for society. Telemedicine applications are bowel disease monitoring based on fiber optics laser endoscopy, gastrointestinal disease fiber optics lights, remote doctor-patient communication, and remote surgeries. However, many existing systems are not effective and their approaches based on deep reinforcement learning have not obtained optimal results. This paper presents the fiber optics IoT healthcare system based on deep reinforcement learning combinatorial constraint scheduling for hybrid telemedicine applications. In the proposed system, we propose the adaptive security deep q-learning network (ASDQN) algorithm methodology to execute all telemedicine applications under their given quality of services (deadline, latency, security, and resources) constraints. For the problem solution, we have exploited different fiber optics endoscopy datasets with images, video, and numeric data for telemedicine applications. The objective is to minimize the overall latency of telemedicine applications (e.g., local, communication, and edge nodes) and maximize the overall rewards during offloading and scheduling on different nodes. The simulation results show that ASDQN outperforms all telemedicine applications with their QoS and objectives compared to existing state action reward state (SARSA) and deep q-learning network (DQN) policy during execution and scheduling on different nodes.
- MeSH
- Algorithms MeSH
- Deep Learning * MeSH
- Internet of Things * MeSH
- Humans MeSH
- Fiber Optic Technology MeSH
- Telemedicine * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Internet of Medical Things (IoMT) is an emerging subset of Internet of Things (IoT), often called as IoT in healthcare, refers to medical devices and applications with internet connectivity, is exponentially gaining researchers' attention due to its wide-ranging applicability in biomedical systems for Smart Healthcare systems. IoMT facilitates remote health biomedical system and plays a crucial role within the healthcare industry to enhance precision, reliability, consistency and productivity of electronic devices used for various healthcare purposes. It comprises a conceptualized architecture for providing information retrieval strategies to extract the data from patient records using sensors for biomedical analysis and diagnostics against manifold diseases to provide cost-effective medical solutions, quick hospital treatments, and personalized healthcare. This article provides a comprehensive overview of IoMT with special emphasis on its current and future trends used in biomedical systems, such as deep learning, machine learning, blockchains, artificial intelligence, radio frequency identification, and industry 5.0.
- MeSH
- Internet * MeSH
- Humans MeSH
- Reproducibility of Results MeSH
- Machine Learning MeSH
- Artificial Intelligence * MeSH
- Health Facilities MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Advanced mathematical and deep learning (DL) algorithms have recently played a crucial role in diagnosing medical parameters and diseases. One of these areas that need to be more focused on is dentistry. This is why creating digital twins of dental issues in the metaverse is a practical and effective technique to benefit from the immersive characteristics of this technology and adapt the real world of dentistry to the virtual world. These technologies can create virtual facilities and environments for patients, physicians, and researchers to access a variety of medical services. Experiencing an immersive interaction between doctors and patients can be another considerable advantage of these technologies, which can dramatically improve the efficiency of the healthcare system. In addition, offering these amenities through a blockchain system enhances reliability, safety, openness, and the ability to trace data exchange. It also brings about cost savings through improved efficiencies. In this paper, a digital twin of cervical vertebral maturation (CVM), which is a critical factor in a wide range of dental surgery, within a blockchain-based metaverse platform is designed and implemented. A DL method has been used to create an automated diagnosis process for the upcoming CVM images in the proposed platform. This method includes MobileNetV2, a mobile architecture that improves the performance of mobile models in multiple tasks and benchmarks. The proposed technique of digital twinning is simple, fast, and suitable for physicians and medical specialists, as well as for adapting to the Internet of Medical Things (IoMT) due to its low latency and computing costs. One of the important contributions of the current study is to use of DL-based computer vision as a real-time measurement method so that the proposed digital twin does not require additional sensors. Furthermore, a comprehensive conceptual framework for creating digital twins of CVM based on MobileNetV2 within a blockchain ecosystem has been designed and implemented, showing the applicability and suitability of the introduced approach. The high performance of the proposed model on a collected small dataset demonstrates that low-cost deep learning can be used for diagnosis, anomaly detection, better design, and many more applications of the upcoming digital representations. In addition, this study shows how digital twins can be performed and developed for dental issues with the lowest hardware infrastructures, reducing the costs of diagnosis and treatment for patients.
- Publication type
- Journal Article MeSH
Medical digital twins, which represent medical assets, play a crucial role in connecting the physical world to the metaverse, enabling patients to access virtual medical services and experience immersive interactions with the real world. One serious disease that can be diagnosed and treated using this technology is cancer. However, the digitalization of such diseases for use in the metaverse is a highly complex process. To address this, this study aims to use machine learning (ML) techniques to create real-time and reliable digital twins of cancer for diagnostic and therapeutic purposes. The study focuses on four classical ML techniques that are simple and fast for medical specialists without extensive Artificial Intelligence (AI) knowledge, and meet the requirements of the Internet of Medical Things (IoMT) in terms of latency and cost. The case study focuses on breast cancer (BC), the second most prevalent form of cancer worldwide. The study also presents a comprehensive conceptual framework to illustrate the process of creating digital twins of cancer, and demonstrates the feasibility and reliability of these digital twins in monitoring, diagnosing, and predicting medical parameters.
- Publication type
- Journal Article MeSH
COVID-19 has depleted healthcare systems around the world. Extreme conditions must be defined as soon as possible so that services and treatment can be deployed and intensified. Many biomarkers are being investigated in order to track the patient's condition. Unfortunately, this may interfere with the symptoms of other diseases, making it more difficult for a specialist to diagnose or predict the severity level of the case. This research develops a Smart Healthcare System for Severity Prediction and Critical Tasks Management (SHSSP-CTM) for COVID-19 patients. On the one hand, a machine learning (ML) model is projected to predict the severity of COVID-19 disease. On the other hand, a multi-agent system is proposed to prioritize patients according to the seriousness of the COVID-19 condition and then provide complete network management from the edge to the cloud. Clinical data, including Internet of Medical Things (IoMT) sensors and Electronic Health Record (EHR) data of 78 patients from one hospital in the Wasit Governorate, Iraq, were used in this study. Different data sources are fused to generate new feature pattern. Also, data mining techniques such as normalization and feature selection are applied. Two models, specifically logistic regression (LR) and random forest (RF), are used as baseline severity predictive models. A multi-agent algorithm (MAA), consisting of a personal agent (PA) and fog node agent (FNA), is used to control the prioritization process of COVID-19 patients. The highest prediction result is achieved based on data fusion and selected features, where all examined classifiers observe a significant increase in accuracy. Furthermore, compared with state-of-the-art methods, the RF model showed a high and balanced prediction performance with 86% accuracy, 85.7% F-score, 87.2% precision, and 86% recall. In addition, as compared to the cloud, the MAA showed very significant performance where the resource usage was 66% in the proposed model and 34% in the traditional cloud, the delay was 19% in the proposed model and 81% in the cloud, and the consumed energy was 31% in proposed model and 69% in the cloud. The findings of this study will allow for the early detection of three severity cases, lowering mortality rates.
- MeSH
- Algorithms MeSH
- COVID-19 * MeSH
- Internet of Things * MeSH
- Humans MeSH
- Delivery of Health Care MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Throughout the last few decades, humans have been fascinated by technological innovation. To solve the universal healthcare challenges, tech companies provided a torrent of innovation. The new coronavirus has established a significant foothold on the world, which is being combated via digital interventions across infected geographical borders and territories. COVID-19 reactions can be coordinated using digital technology in a cascade that spans from the healthcare care facility to the pending viral epicenter’s exterior. As evidence, there are incidents of medical robotics, surveillance drones, as well as the internet - of - things. COVID-19 diagnostics are based on PCR tests and medical imaging. At a clinical accuracy of percent, computed tomography assisted in correcting the accuracy variance of PCR testing. COVID-19 reactions can be independent thanks to artificial intelligence. When properly sourced, technology may be a never-ending system of invention and potential. Scientists can use technology to address global issues, pushing the boundaries of concrete possibility. Digital interventions have improved COVID-19 responses, emphasised the need of medical imaging throughout the outbreak, and exposed healthcare personnel to the possibility of contactless treatment.
The concurrent development of different computerized and media communications advancements in 2020 has set out an uncommon freedom for ophthalmology to adjust to new models of care utilizing tele-wellbeing upheld by advanced developments. These advanced developments incorporate computerized reasoning (AI), fifth era (5G) telecom organizations and the Internet of Things (IoT), making a between subordinate environment offering amazing chances to foster new models of eye care tending to the difficulties of COVID-19 and then some. Ophthalmology has flourished in a portion of these areas somewhat because of its many picture based examinations. Tele-wellbeing and AI give simultaneous answers for difficulties confronting ophthalmologists and medical care suppliers around the world. This article audits how nations across the world have used these advanced developments to handle diabetic retinopathy, retinopathy of rashness, age-related macular degeneration, glaucoma, refractive blunder remedy, waterfall and other foremost fragment problems. The audit sums up the advanced techniques that nations are creating and talks about innovations that may progressively enter the clinical work process and cycles of ophthalmologists. Moreover as nations all over the planet have started a progression of heightening regulation and moderation measures during the COVID-19 pandemic, the conveyance of eye care benefits internationally has been fundamentally influenced. As ophthalmic administrations adjust and shape “another typical”, the fast reception of some of telehealth and advanced development during the pandemic is additionally talked about. At long last, challenges for approval and clinical execution are thought of, as well as suggestions on future headings.
Cyber-attack detection via on-gadget embedded models and cloud systems are widely used for the Internet of Medical Things (IoMT). The former has a limited computation ability, whereas the latter has a long detection time. Fog-based attack detection is alternatively used to overcome these problems. However, the current fog-based systems cannot handle the ever-increasing IoMT's big data. Moreover, they are not lightweight and are designed for network attack detection only. In this work, a hybrid (for host and network) lightweight system is proposed for early attack detection in the IoMT fog. In an adaptive online setting, six different incremental classifiers were implemented, namely a novel Weighted Hoeffding Tree Ensemble (WHTE), Incremental K-Nearest Neighbors (IKNN), Incremental Naïve Bayes (INB), Hoeffding Tree Majority Class (HTMC), Hoeffding Tree Naïve Bayes (HTNB), and Hoeffding Tree Naïve Bayes Adaptive (HTNBA). The system was benchmarked with seven heterogeneous sensors and a NetFlow data infected with nine types of recent attack. The results showed that the proposed system worked well on the lightweight fog devices with ~100% accuracy, a low detection time, and a low memory usage of less than 6 MiB. The single-criteria comparative analysis showed that the WHTE ensemble was more accurate and was less sensitive to the concept drift.
- MeSH
- Bayes Theorem MeSH
- Big Data MeSH
- Early Diagnosis MeSH
- Internet of Things * MeSH
- Publication type
- Journal Article MeSH