BACKGROUND: Although evidence indicates that load carriage may have an influence on walking patterns, the specific impacts of progressively increased loads on spatial and temporal gait asymmetries remain underexplored. Therefore, the primary aim of this study was to examine whether an increased load carriage had an effect on spatiotemporal gait asymmetries among intervention police officers. METHODS: For the purpose of this study, 96 male intervention police officers were recruited and assessed under four load conditions: (i) "No load", (ii) "a 5 kg load", (iii) "a 25 kg load", and (iv) "a 45 kg load". Spatial and temporal gait parameters were measured using a pedobarographic platform (Zebris FDM). The spatial and temporal gait parameters, along with the ground reaction forces beneath different foot regions, were examined. The gait asymmetry for each parameter was calculated using the formula (xright - xleft)/0.5 × (xright + xleft)*100%, where "x" represents the numerical value of each parameter for the left and right sides of the body. RESULTS: The findings indicated no statistically significant differences in the spatiotemporal parameters, nor ground reaction force gait asymmetries between the left and right foot, during walking under a progressively increased load carriage. Additionally, the parameter values for both the left and right sides of the body remained consistent, with a high intercorrelation observed across all of the loading conditions. The gait speed and ground reaction forces, which served as covariates, did not significantly change the spatiotemporal gait asymmetries. CONCLUSIONS: In summary, this study demonstrates that an increased load carriage did not lead to a progressive rise in spatiotemporal gait asymmetries in professional intervention police officers. However, further examination using an advanced 3-D gait analysis and an assessment of physiological patterns and adaptations is recommended to identify and confirm the key factors influencing gait asymmetry.
- Publikační typ
- časopisecké články MeSH
In this study, the surface laser treatment of a new type of dental biomaterial, a Ti-graphite composite, prepared by low-temperature powder metallurgy, was investigated. Different levels of output laser power and the scanning speed of the fiber nanosecond laser with a wavelength of 1064 nm and argon as a shielding gas were used in this experiment. The surface integrity of the machined surfaces was evaluated to identify the potential for the dental implant's early osseointegration process, including surface roughness parameter documentation by contact and non-contact methods, surface morphology assessment by scanning electron microscopy, and surface wettability estimation using the sessile drop technique. The obtained results showed that the surface roughness parameters attributed to high osseointegration relevance (Rsk, Rku, and Rsm) were not significantly influenced by laser power, and on the other hand, the scanning speed seems to have the most prevalent effect on surface roughness when exhibiting statistical differences in all evaluated profile roughness parameters except Rvk. The obtained laser-modified surfaces were hydrophilic, with a contact angle in the range of 62.3° to 83.2°.
- Publikační typ
- časopisecké články MeSH
To compare the therapeutic efficacy of cryopreserved amniotic membrane (AM) grafts and standard of care (SOC) in treating nonhealing wounds (NHW) through a prospective multicenter clinical trial, 42 patients (76% polymorbid) with 54 nonhealing wounds of various etiologies (mainly venous) and an average baseline size of 20 cm2 were included. All patients were treated for at least 6 weeks in the center before they were involved in the study. In the SOC group, 29 patients (36 wounds) were treated. If the wound healed less than 20% of the baseline size after 6 weeks, the patient was transferred to the AM group (35 patients, 43 wounds). Weekly visits included an assessment of the patient's condition, photo documentation, wound debridement, and dressing. Quality of life and the pain degree were subjectively reported by patients. After SOC, 7 wounds were healed completely, 1 defect partially, and 28 defects remained unhealed. AM application led to the complete closure of 24 wounds, partial healing occurred in 10, and 9 remained unhealed. The degree of pain and the quality of life improved significantly in all patients after AM application. This study demonstrates the effectiveness of cryopreserved AM grafts in the healing of NHW of polymorbid patients and associated pain reduction.
- Publikační typ
- časopisecké články MeSH
Medical digital twins, which represent medical assets, play a crucial role in connecting the physical world to the metaverse, enabling patients to access virtual medical services and experience immersive interactions with the real world. One serious disease that can be diagnosed and treated using this technology is cancer. However, the digitalization of such diseases for use in the metaverse is a highly complex process. To address this, this study aims to use machine learning (ML) techniques to create real-time and reliable digital twins of cancer for diagnostic and therapeutic purposes. The study focuses on four classical ML techniques that are simple and fast for medical specialists without extensive Artificial Intelligence (AI) knowledge, and meet the requirements of the Internet of Medical Things (IoMT) in terms of latency and cost. The case study focuses on breast cancer (BC), the second most prevalent form of cancer worldwide. The study also presents a comprehensive conceptual framework to illustrate the process of creating digital twins of cancer, and demonstrates the feasibility and reliability of these digital twins in monitoring, diagnosing, and predicting medical parameters.
- Publikační typ
- časopisecké články MeSH