Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Metaverse and Healthcare: Machine Learning-Enabled Digital Twins of Cancer

O. Moztarzadeh, MB. Jamshidi, S. Sargolzaei, A. Jamshidi, N. Baghalipour, M. Malekzadeh Moghani, L. Hauer

. 2023 ; 10 (4) : . [pub] 20230407

Status neindexováno Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23010032

Medical digital twins, which represent medical assets, play a crucial role in connecting the physical world to the metaverse, enabling patients to access virtual medical services and experience immersive interactions with the real world. One serious disease that can be diagnosed and treated using this technology is cancer. However, the digitalization of such diseases for use in the metaverse is a highly complex process. To address this, this study aims to use machine learning (ML) techniques to create real-time and reliable digital twins of cancer for diagnostic and therapeutic purposes. The study focuses on four classical ML techniques that are simple and fast for medical specialists without extensive Artificial Intelligence (AI) knowledge, and meet the requirements of the Internet of Medical Things (IoMT) in terms of latency and cost. The case study focuses on breast cancer (BC), the second most prevalent form of cancer worldwide. The study also presents a comprehensive conceptual framework to illustrate the process of creating digital twins of cancer, and demonstrates the feasibility and reliability of these digital twins in monitoring, diagnosing, and predicting medical parameters.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23010032
003      
CZ-PrNML
005      
20230721095344.0
007      
ta
008      
230707s2023 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/bioengineering10040455 $2 doi
035    __
$a (PubMed)37106642
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Moztarzadeh, Omid $u Department of Stomatology, University Hospital Pilsen, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic $u Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic $1 https://orcid.org/0000000247682382
245    10
$a Metaverse and Healthcare: Machine Learning-Enabled Digital Twins of Cancer / $c O. Moztarzadeh, MB. Jamshidi, S. Sargolzaei, A. Jamshidi, N. Baghalipour, M. Malekzadeh Moghani, L. Hauer
520    9_
$a Medical digital twins, which represent medical assets, play a crucial role in connecting the physical world to the metaverse, enabling patients to access virtual medical services and experience immersive interactions with the real world. One serious disease that can be diagnosed and treated using this technology is cancer. However, the digitalization of such diseases for use in the metaverse is a highly complex process. To address this, this study aims to use machine learning (ML) techniques to create real-time and reliable digital twins of cancer for diagnostic and therapeutic purposes. The study focuses on four classical ML techniques that are simple and fast for medical specialists without extensive Artificial Intelligence (AI) knowledge, and meet the requirements of the Internet of Medical Things (IoMT) in terms of latency and cost. The case study focuses on breast cancer (BC), the second most prevalent form of cancer worldwide. The study also presents a comprehensive conceptual framework to illustrate the process of creating digital twins of cancer, and demonstrates the feasibility and reliability of these digital twins in monitoring, diagnosing, and predicting medical parameters.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Jamshidi, Mohammad Behdad $u Faculty of Electrical Engineering, University of West Bohemia, 30100 Pilsen, Czech Republic $1 https://orcid.org/0000000253126497
700    1_
$a Sargolzaei, Saleh $u Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran $1 https://orcid.org/0009000614713337
700    1_
$a Jamshidi, Alireza $u Dentistry School, Babol University of Medical Sciences, Babol 4717647745, Iran $1 https://orcid.org/0000000317365607
700    1_
$a Baghalipour, Nasimeh $u Department of Stomatology, University Hospital Pilsen, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic $1 https://orcid.org/0000000259615806
700    1_
$a Malekzadeh Moghani, Mona $u Department of Radiation Oncology, Medical School, Shahid Beheshti, University of Medical Sciences, Teheran 1985717443, Iran
700    1_
$a Hauer, Lukas $u Department of Stomatology, University Hospital Pilsen, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
773    0_
$w MED00193488 $t Bioengineering (Basel, Switzerland) $x 2306-5354 $g Roč. 10, č. 4 (2023)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37106642 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230707 $b ABA008
991    __
$a 20230721095337 $b ABA008
999    __
$a ok $b bmc $g 1958609 $s 1196296
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2023 $b 10 $c 4 $e 20230407 $i 2306-5354 $m Bioengineering $n Bioengineering (Basel) $x MED00193488
LZP    __
$a Pubmed-20230707

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...