Using the IBM SPSS SW Tool with Wavelet Transformation for CO₂ Prediction within IoT in Smart Home Care

. 2019 Mar 21 ; 19 (6) : . [epub] 20190321

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30901979

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000867 European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project

Standard solutions for handling a large amount of measured data obtained from intelligent buildings are currently available as software tools in IoT platforms. These solutions optimize the operational and technical functions managing the quality of the indoor environment and factor in the real needs of residents. The paper examines the possibilities of increasing the accuracy of CO₂ predictions in Smart Home Care (SHC) using the IBM SPSS software tools in the IoT to determine the occupancy times of a monitored SHC room. The processed data were compared at daily, weekly and monthly intervals for the spring and autumn periods. The Radial Basis Function (RBF) method was applied to predict CO₂ levels from the measured indoor and outdoor temperatures and relative humidity. The most accurately predicted results were obtained from data processed at a daily interval. To increase the accuracy of CO₂ predictions, a wavelet transform was applied to remove additive noise from the predicted signal. The prediction accuracy achieved in the selected experiments was greater than 95%.

Zobrazit více v PubMed

Vanus J., Martinek R., Kubicek J., Penhaker M., Nedoma J., Fajkus M. Using the PI processbook software tool to monitor room occupancy in smart home care; Proceedings of the 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom); Ostrava, Czech Republic. 17–20 September 2018; DOI

Clements-Croome D.J. Intelligent Buildings. ICE Publishing; London, UK: 2013. p. 1.

Harper R. Inside the Smart Home. Springer; Berlin/Heidelberg, Germany: 2003. p. 24.

Longhi S., Freddi A., Monteriù A. Human Monitoring, Smart Health and Assisted Living: Techniques and Technologies (Healthcare Technologies) Institution of Engineering and Technology; Stevenage, UK: 2017.

Beaudin J.S., Intille S.S., Morris M.E. To Track or Not to Track: User Reactions to Concepts in Longitudinal Health Monitoring. J. Med. Internet Res. 2006;8:e29. doi: 10.2196/jmir.8.4.e29. PubMed DOI PMC

Booysen M.J. Machine-To-Machine (M2M) Communications in Vehicular Networks. KSII Trans. Internet Inf. Syst. 2012;6 doi: 10.3837/tiis.2012.02.005. DOI

Basu D., Moretti G., Gupta G.S., Marsland S. Wireless sensor network based smart home: Sensor selection, deployment and monitoring; Proceedings of the IEEE Sensors Applications Symposium Proceedings; Galveston, TX, USA. 19–21 February 2013; pp. 49–54. DOI

Fleck S., Strasser W. Smart Camera Based Monitoring System and Its Application to Assisted Living. Proc. IEEE. 2008;96:1698–1714. doi: 10.1109/JPROC.2008.928765. DOI

Pantazaras A., Lee S.E., Santamouris M., Yang J. Predicting the CO2 levels in buildings using deterministic and identified models. Energy Build. 2016;127:774–785. doi: 10.1016/j.enbuild.2016.06.029. DOI

Ríos-Moreno G.J., Trejo-Perea M., Castañeda-Miranda R., Hernández-Guzmán V.M., Herrera-Ruiz G. Modelling temperature in intelligent buildings by means of autoregressive models. Autom. Constr. 2007;16:713–722. doi: 10.1016/j.autcon.2006.11.003. DOI

Aggarwal M., Madhukar M. Cloud Computing Systems and Applications in Healthcare. IGI Global; Hershey, PA, USA: 2017. IBM’s Watson analytics for health care: A miracle made true; pp. 117–134.

Kaur A., Jasuja A. Health monitoring based on IoT using Raspberry PI; Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA); Greater Noida, India. 5–6 May 2017; pp. 1335–1340.

Petnik J., Vanus J. Design of Smart Home Implementation within IoT with Natural Language Interface. IFAC PapersOnline. 2018;51:174–179. doi: 10.1016/j.ifacol.2018.07.149. DOI

McEwen A., Cassimally H. Designing the Internet of Things. 1st ed. John Wiley & Sons Ltd.; Chichester, UK: 2008. p. 9.

Xu B., Zheng J., Wang Q. Analysis and Design of Real-Time Micro-Environment Parameter Monitoring System Based on Internet of Things; Proceedings of the 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData); Chengdu, China. 15–18 December 2016.

Min Q., Ding Y.F., Xiao T., Wang S. Research of Visualization Monitoring Technology Based on Internet of Things in Discrete Manufacturing Process; Proceedings of the 2015 2nd International Symposium on Dependable Computing and Internet of Things (Dcit); Wuhan, China. 16–18 November 2015; pp. 128–133.

Wang Y., Song J., Liu X., Jiang S., Liu Y. Plantation Monitoring System Based on Internet of Things; Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing; Beijing, China. 20–23 August 2013; pp. 366–369.

Windarto Y.E., Eridani D. Door and Light Control Prototype Using Intel Galileo Based Internet of Things; Proceedings of the 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE); Semarang, Indonesia. 18–19 October 2017; pp. 176–180.

Coelho C., Coelho D., Wolf M. An IoT Smart Home Architecture for Long-Term Care of People with Special Needs; Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IOT); Milan, Italy. 14–16 December 2015; pp. 626–627.

Oxford Dictionaries, Definition of Big Data in English. [(accessed on 25 November 2018)]; Available online: https://en.oxforddictionaries.com/definition/big_data.

Nyce C. Predictive Analytics White Paper. [(accessed on 25 November 2018)];2007 Available online: https://www.the-digital-insurer.com/wp-content/uploads/2013/12/78-Predictive-Modeling-White-Paper.pdf.

Rouse M. Predictive Modeling. [(accessed on 25 November 2018)]; Available online: https://searchenterpriseai.techtarget.com/definition/predictive-modeling.

Ahmad M.W., Reynolds J., Rezgui Y. Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. J. Clean. Prod. 2018;203:810–821. doi: 10.1016/j.jclepro.2018.08.207. DOI

IBM SPSS Software. [(accessed on 25 November 2018)]; Available online: https://www.ibm.com/analytics/spss-statistics-software.

IBM Watson. [(accessed on 25 November 2018)]; Available online: https://www.ibm.com/watson/

Nagwanshi K.K., Dubey S. Statistical Feature Analysis of Human Footprint for Personal Identification Using BigML and IBM Watson Analytics. Arab. J. Sci. Eng. 2018;43:2703–2712. doi: 10.1007/s13369-017-2711-z. DOI

Perumal T., Datta S.K., Bonnet C. IoT Device Management Framework for Smart Home Scenarios; Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE); Osaka, Japan. 27–30 October 2015; pp. 54–55.

Arnold O., Kirsch L., Schulz A. An Interactive Concierge for Independent Living; Proceedings of the 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE); Tokyo, Japan. 7–10 October 2014; pp. 59–62.

Carvalko J.R. Law and policy in an era of cyborg-assisted-life the implications of interfacing in-the-body technologies to the outer world; Proceedings of the 2013 IEEE International Symposium on Technology and Society; Toronto, ON, Canada. 27–29 June 2013; New York, NY, USA: IEEE; 2013. pp. 204–215.

Cervenka P., Hlavaty I., Miklosik A., Lipianska J. Using cognitive systems in marketing analysis. Econ. Ann. XXI. 2016;160:56–61. doi: 10.21003/ea.V160-11. DOI

Chen Y., Argentinis E., Weber G. IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research. Clin. Ther. 2016;38:688–701. doi: 10.1016/j.clinthera.2015.12.001. PubMed DOI

Coccoli M., Maresca P., Stanganelli L., Knowledge Systems Institute . DMS 2016: The 22nd International Conference on Distributed Multimedia Systems. Knowledge Systems Institute; Skokie, IL, USA: 2016. Teaching Computer Programming Through Hands-on Labs on Cognitive Computing; pp. 158–164.

Devarakonda M., Zhang D., Tsou C.H., Bornea M. Problem-Oriented Patient Record Summary: An Early Report on a Watson Application; Proceedings of the 2014 IEEE 16th International Conference on E-Health Networking, Applications and Services (Healthcom); Natal, Brazil. 15–18 October 2014; pp. 281–286.

Guidi G., Miniati R., Mazzola M., Iadanza E. Case Study: IBM Watson Analytics Cloud Platform as Analytics-as-a-Service System for Heart Failure Early Detection. Future Internet. 2016;8:32. doi: 10.3390/fi8030032. DOI

Kolker E., Ozdemir V. How Healthcare Can Refocus on Its Super-Customers (Patients, n = 1) and Customers (Doctors and Nurses) by Leveraging Lessons from Amazon, Uber, and Watson. OMICS J. Integr. Biol. 2016;20:329–333. doi: 10.1089/omi.2016.0077. PubMed DOI

Murtaza S.S., Lak P., Bener A., Pischdotchian A. How to Effectively Train IBM Watson: Classroom Experience. In: Bui T.X., Sprague R.H., editors. Proceedings of the 2016 49th Hawaii International Conference on System Sciences; Koloa, HI, USA. 5–8 January 2016; Los Alamitos, CA, USA: IEEE Computer Society; 2016. pp. 1663–1670.

AlFaris F., Juaidi A., Manzano-Agugliaro F. Intelligent homes’ technologies to optimize the energy performance for the net zero energy home. Energy Build. 2017;153:262–274. doi: 10.1016/j.enbuild.2017.07.089. DOI

Alirezaie M., Renoux J., Köckemann U., Kristoffersson A., Karlsson L., Blomqvist E., Tsiftes N., Voigt T., Loutfi A. An Ontology-based Context-aware System for Smart Homes: E-care@home. Sensors. 2017;17:1586. doi: 10.3390/s17071586. PubMed DOI PMC

Bassoli M., Bianchi V., de Munari I. A Plug and Play IoT Wi-Fi Smart Home System for Human Monitoring. Electronics. 2018;7:200. doi: 10.3390/electronics7090200. DOI

Catherwood P.A., Steele D., Little M., McComb S., McLaughlin J. A Community-Based IoT Personalized Wireless Healthcare Solution Trial. IEEE J. Transl. Eng. Health Med. 2018;6:1–13. doi: 10.1109/JTEHM.2018.2822302. PubMed DOI PMC

Vanus J., Belesova J., Martinek R., Nedoma J., Fajkus M., Bilik P., Zidek J. Monitoring of the daily living activities in smart home care. Hum. Cent. Comput. Inf. Sci. 2017;7:30. doi: 10.1186/s13673-017-0113-6. DOI

Vanus J., Martinek R., Bilik P., Zidek J., Dohnalek P., Gajdos P. New method for accurate prediction of CO2 in the Smart Home; Proceedings of the Conference Record IEEE Instrumentation and Measurement Technology Conference; Taipei, Taiwan. 23–26 May 2016.

Vanus J., Martinek R., Bilik P., Zidek J., Skotnicova I. Evaluation of Thermal Comfort of the Internal Environment in Smart Home Using Objective and Subjective Factors; Proceedings of the 2016 17th International Scientific Conference on Electric Power Engineering; Gothenburg, Sweden. 16–18 May 2016; New York, NY, USA: IEEE; 2016. pp. 524–528.

Vanus J., Martinek R., Nedoma J., Fajkus M., Cvejn D., Valicek P., Novak T. Utilization of the LMS Algorithm to Filter the Predicted Course by Means of Neural Networks for Monitoring the Occupancy of Rooms in an Intelligent Administrative Building. IFAC PapersOnline. 2018;51:378–383. doi: 10.1016/j.ifacol.2018.07.183. DOI

Vanus J., Martinek R., Nedoma J., Fajkus M., Valicek P., Novak T. Utilization of Interoperability between the BACnet and KNX Technologies for Monitoring of Operational-Technical Functions in Intelligent Buildings by Means of the PI System SW Tool. IFAC PapersOnline. 2018;51:372–377. doi: 10.1016/j.ifacol.2018.07.182. DOI

Vanus J., Smolon M., Martinek R., Koziorek J., Zidek J., Bilik P. Testing of the voice communication in smart home care. Hum. Cent. Comput. Inf. Sci. 2015;5:15. doi: 10.1186/s13673-015-0035-0. DOI

Vanus J., Stratil T., Martinek R., Bilik P., Zidek J. The Possibility of Using VLC Data Transfer in the Smart Home. IFAC PapersOnline. 2016;49:176–181. doi: 10.1016/j.ifacol.2016.12.030. DOI

Vanus J., Valicek P., Novak T., Martinek R., Bilik P., Zidek J. Utilization of regression analysis to increase the control accuracy of dimmer lighting systems in the Smart Home. IFAC PapersOnline. 2016;49:517–522. doi: 10.1016/j.ifacol.2016.12.072. DOI

Vanus J., Vojcinak P., Martinek R., Kellnar M., Machacek Z., Bilik P., Koziorek J., Zidek J. Building heating technology in Smart Home using PI System management tools. Perspect. Sci. 2016;7:114–121. doi: 10.1016/j.pisc.2015.11.019. DOI

Vanus J., Machac J., Martinek R., Bilik P., Zidek J., Nedoma J., Fajkus M. The design of an indirect method for the human presence monitoring in the intelligent building. Hum. Cent. Comput. Inf. Sci. 2018;8:28. doi: 10.1186/s13673-018-0151-8. DOI

Skotnicova I., Lausova L., Michalcova V., Vanus J. Nano, Bio and Green—Technologies for a Sustainable Future Conference Proceedings, SGEM 2016, Vol II (International Multidisciplinary Scientific GeoConference-SGEM, Vienna, Austria, 2–5 November 2016. Stef92 Technology Ltd.; Sofia, Bulgaria: 2016. Temperatures and heat transfer beneath a ground floor slab in a passive house; pp. 269–276.

Vanus J., Machac J., Martinek R., Bilik P. Design of an application for the monitoring and visualization of technological processes with pi system in an intelligent building for mobile devices; Proceedings of the 9th International Scientific Symposium on Electrical Power Engineering (ELEKTROENERGETIKA); Stara Lesna, Slovakia. 12–14 September 2017; pp. 518–522.

Vanus J., Machacek Z., Koziorek J., Walendziuk W., Kolar V., Jaron Z. Advanced energy management system in Smart Home Care. Int. J. Appl. Electromagn. Mech. 2016;52:517–524. doi: 10.3233/JAE-162028. DOI

IBM SPSS Modeler 16 Algorithms Guide. [(accessed on 25 November 2018)]; Available online: ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/16.0/en/AlgorithmsGuide.pdf.

IBM SPSS Modeler 17 Algorithms Guide. [(accessed on 25 November 2018)]; Available online: ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/17.0/en/AlgorithmsGuide.pdf.

IBM SPSS Modeler 18 Algorithms Guide. [(accessed on 25 November 2018)]; Available online: ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/AlgorithmsGuide.pdf.

PI System™ from Data to Knowledge to Transformation. [(accessed on 10 January 2019)]; Available online: https://www.osisoft.com/pi-system/#tab1.

Liu Z., Cheng K., Li H., Cao G., Wu D., Shi Y. Exploring the potential relationship between indoor air quality and the concentration of airborne culturable fungi: A combined experimental and neural network modeling study. Environ. Sci. Pollut. Res. 2018;25:3510–3517. doi: 10.1007/s11356-017-0708-5. PubMed DOI

Sterman M., Baglione M. Simulating the use of CO2 concentration inputs for controlling temperature in a hydronic radiant system; Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE); Tampa, FL, USA. 3–9 November 2017; DOI

Zuraimi M.S., Pantazaras A., Chaturvedi K.A., Yang J.J., Tham K.W., Lee S.E. Predicting occupancy counts using physical and statistical Co2-based modeling methodologies. Build. Environ. 2017;123:517–528. doi: 10.1016/j.buildenv.2017.07.027. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...