Design of a New Method for Detection of Occupancy in the Smart Home Using an FBG Sensor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31936789
PubMed Central
PMC7013694
DOI
10.3390/s20020398
PII: s20020398
Knihovny.cz E-zdroje
- Klíčová slova
- artificial neural network (ANN), fiber bragg grating (FBG), number of person recognition, occupancy, prediction, scaled conjugate gradient (SCG), smart home (SH),
- Publikační typ
- časopisecké články MeSH
This article introduces a new way of using a fibre Bragg grating (FBG) sensor for detecting the presence and number of occupants in the monitored space in a smart home (SH). CO2 sensors are used to determine the CO2 concentration of the monitored rooms in an SH. CO2 sensors can also be used for occupancy recognition of the monitored spaces in SH. To determine the presence of occupants in the monitored rooms of the SH, the newly devised method of CO2 prediction, by means of an artificial neural network (ANN) with a scaled conjugate gradient (SCG) algorithm using measurements of typical operational technical quantities (indoor temperature, relative humidity indoor and CO2 concentration in the SH) is used. The goal of the experiments is to verify the possibility of using the FBG sensor in order to unambiguously detect the number of occupants in the selected room (R104) and, at the same time, to harness the newly proposed method of CO2 prediction with ANN SCG for recognition of the SH occupancy status and the SH spatial location (rooms R104, R203, and R204) of an occupant. The designed experiments will verify the possibility of using a minimum number of sensors for measuring the non-electric quantities of indoor temperature and indoor relative humidity and the possibility of monitoring the presence of occupants in the SH using CO2 prediction by means of the ANN SCG method with ANN learning for the data obtained from only one room (R203). The prediction accuracy exceeded 90% in certain experiments. The uniqueness and innovativeness of the described solution lie in the integrated multidisciplinary application of technological procedures (the BACnet technology control SH, FBG sensors) and mathematical methods (ANN prediction with SCG algorithm, the adaptive filtration with an LMS algorithm) employed for the recognition of number persons and occupancy recognition of selected monitored rooms of SH.
Zobrazit více v PubMed
Azghandi M.V., Nikolaidis I., Stroulia E. Multi–occupant movement tracking in smart home environments; Proceedings of the International Conference on Smart Homes and Health Telematics; Geneva, Switzerland. 10–12 June 2015; pp. 319–324.
Benmansour A., Bouchachia A., Feham M. Multioccupant activity recognition in pervasive smart home environments. ACM Comput. Surv. 2015;48:34. doi: 10.1145/2835372. DOI
Braun A., Majewski M., Wichert R., Kuijper A. Investigating low-cost wireless occupancy sensors for beds; Proceedings of the 2016 International Conference on Distributed, Ambient, and Pervasive Interactions; Toronto, ON, Canada. 17–22 July 2016; pp. 26–34.
Chan Z.Y., Shum P. Smart Office—A Voice-Controlled Workplace for Everyone. Nanyang Technological University; Singapore: 2018.
Chen Z., Wang Y., Liu H. Unobtrusive sensor-based occupancy facing direction detection and tracking using advanced machine learning algorithms. IEEE Sens. J. 2018;18:6360–6368. doi: 10.1109/JSEN.2018.2844252. DOI
Khan M.A.A.H., Kukkapalli R., Waradpande P., Kulandaivel S., Banerjee N., Roy N., Robucci R. RAM: Radar-Based Activity Monitor; Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications; San Francisco, CA, USA. 10–14 April 2016.
Lee H., Wu C., Aghajan H. Vision-based user-centric light control for smart environments. Pervasive Mob. Comput. 2011;7:223–240. doi: 10.1016/j.pmcj.2010.08.003. DOI
Mokhtari G., Zhang Q., Nourbakhsh G., Ball S., Karunanithi M. BLUESOUND: A New Resident Identification Sensor—Using Ultrasound Array and BLE Technology for Smart Home Platform. IEEE Sens. J. 2017;17:1503–1512. doi: 10.1109/JSEN.2017.2647960. DOI
Yan D., Jin Y., Sun H., Dong B., Ye Z., Li Z., Yuan Y. Household appliance recognition through a Bayes classification model. Sustain. Cities Soc. 2019;46:101393. doi: 10.1016/j.scs.2018.12.021. DOI
Yang J., Zou H., Jiang H., Xie L. Device-Free Occupant Activity Sensing Using WiFi-Enabled IoT Devices for Smart Homes. IEEE Internet Things J. 2018;5:3991–4002. doi: 10.1109/JIOT.2018.2849655. DOI
Feng X., Yan D., Hong T. Simulation of occupancy in buildings. Energy Build. 2015;87:348–359. doi: 10.1016/j.enbuild.2014.11.067. DOI
Yin J., Fang M., Mokhtari G., Zhang Q. Multi-resident location tracking in smart home through non-wearable unobtrusive sensors; Proceedings of the 14th International Conference on Smart Homes and Health Telematics (ICOST 2016); Wuhan, China. 25–27 May 2016; pp. 3–13.
Hong T., Sun H., Chen Y., Taylor-Lange S.C., Yan D. An occupant behavior modeling tool for co-simulation. Energy Build. 2016;117:272–281. doi: 10.1016/j.enbuild.2015.10.033. DOI
Vanus J., Martinek R., Bilik P., Zidek J., Skotnicova I. Evaluation of thermal comfort of the internal environment in smart home using objective and subjective factors; Proceedings of the 17th International Scientific Conference on Electric Power Engineering; Prague, Czech Republic. 16–18 May 2016.
Polednik J., Pavlik J., Skotnicova I. Research and Innovation Centre. [(accessed on 15 August 2019)]; Available online: http://www.vyzkumneinovacnicentrum.cz/wp-content/uploads/2014/10/Vyzkumne-inovacni-centrum.pdf.
Hill K.O., Malo B., Bilodeau F., Johnson D.C., Albert J. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 1993;62:1035–1037. doi: 10.1063/1.108786. DOI
Othonos A. Fiber bragg gratings. Rev. Sci. Instrum. 1997;68:4309–4341. doi: 10.1063/1.1148392. DOI
Kunzler M., Udd E., Taylor T., Kunzler W. Traffic Monitoring Using Fiber Optic Grating Sensors on the I-84 Freeway & Future Uses in WIM; Proceedings of the Sixth Pacific Northwest Fiber Optic Sensor Workshop; Troutdale, OR, USA. 14 May 2003; pp. 122–127.
Wei C.-L., Lai C.-C., Liu S.-Y., Chung W.H., Ho T.K., Tam H.-Y., Ho S.L., McCusker A., Kam J., Lee K.Y. A fiber Bragg grating sensor system for train axle counting. IEEE Sens. J. 2010;10:1905–1912.
Moorman W., Taerwe L., De Waele W., Degrieck J., Himpe J. Measuring ground anchor forces of a quay wall with Bragg sensors. J. Struct. Eng. 2005;131:322–328. doi: 10.1061/(ASCE)0733-9445(2005)131:2(322). DOI
Fajkus M., Nedoma J., Martinek R., Vasinek V., Nazeran H., Siska P. A non-invasive multichannel hybrid fiber-optic sensor system for vital sign monitoring. Sensors. 2017;17:111. doi: 10.3390/s17010111. PubMed DOI PMC
Fajkus M., Nedoma J., Siska P., Bednarek L., Zabka S., Vasinek V. Perimeter system based on a combination of a Mach-Zehnder interferometer and the bragg gratings. Adv. Electr. Electron. Eng. 2016;14:318–324. doi: 10.15598/aeee.v14i3.1752. DOI
Fajkus M., Navruz I., Kepak S., Davidson A., Siska P., Cubik J., Vasinek V. Capacity of wavelength and time division multiplexing for quasi-distributed measurement using fiber bragg gratings. Adv. Electr. Electron. Eng. 2015;13:575–582. doi: 10.15598/aeee.v13i5.1508. DOI
Nedoma J., Fajkus M., Bednarek L., Frnda J., Zavadil J., Vasinek V. Encapsulation of FBG sensor into the PDMS and its effect on spectral and temperature characteristics. Adv. Electr. Electron. Eng. 2016;14:460–466. doi: 10.15598/aeee.v14i4.1786. DOI
Zhang Y., Chang X., Zhang X., He X. IOP Conference Series: Materials Science and Engineering. Volume 322 IOP Publishing Ltd.; Bristol, UK: 2018. The Packaging Technology Study on Smart Composite Structure Based on the Embedded FBG Sensor.
Anoshkin A.N., Shipunov G.S., Voronkov A.A., Shardakov I.N. AIP Conference Proceedings. Volume 1909 AIP Publishing; Tomsk, Russia: 2017. Effect of temperature on the spectrum of fiber Bragg grating sensors embedded in polymer composite.
Wang T., He D., Yang F., Wang Y. Fiber Bragg grating sensors for strain monitoring of steelwork; Proceedings of the 2009 International Conference on Optical Instruments and Technology; Shanghai, China. 19–22 October 2009;
Vanus J., Belesova J., Martinek R., Nedoma J., Fajkus M., Bilik P., Zidek J. Monitoring of the daily living activities in smart home care. Human Cent. Comput. Inf. Sci. 2017;7:30. doi: 10.1186/s13673-017-0113-6. DOI
Vanus J., Kubicek J., Gorjani O.M., Koziorek J. Using the IBM SPSS SW Tool with Wavelet Transformation for CO2 Prediction within IoT in Smart Home Care. Sensors. 2019;19:1407. doi: 10.3390/s19061407. PubMed DOI PMC
Vanus J., Machac J., Martinek R., Bilik P., Zidek J., Nedoma J., Fajkus M. The design of an indirect method for the human presence monitoring in the intelligent building. Human Cent. Comput. Inf. Sci. 2018;8:28. doi: 10.1186/s13673-018-0151-8. DOI
Moller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993;6:525–533. doi: 10.1016/S0893-6080(05)80056-5. DOI
Steihaug T. The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 1983;20:626–637. doi: 10.1137/0720042. DOI
Branch M.A., Coleman T.F., Li Y. Subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 1999;21:1–23. doi: 10.1137/S1064827595289108. DOI
Vanus J., Martinek R., Bilik P., Zidek J., Dohnalek P., Gajdos P. New method for accurate prediction of CO2 in the Smart Home; Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings; Taipei, Taiwan. 23–26 May 2016.
Farhang-Boroujeny B. Adaptive Filters: Theory and Applications. John Wiley & Sons; Chichester, UK: 1998.
Poularikas A.D., Ramadan Z.M. Adaptive Filtering Primer with MATLAB. CRC Press; Boca Raton, FL, USA: 2017.
Vanus J., Martinek R., Nedoma J., Fajkus M., Cvejn D., Valicek P., Novak T. Utilization of the LMS Algorithm to Filter the Predicted Course by Means of Neural Networks for Monitoring the Occupancy of Rooms in an Intelligent Administrative Building. IFAC-PapersOnLine. 2018;51:378–383. doi: 10.1016/j.ifacol.2018.07.183. DOI
Vanus J., Martinek R., Nedoma J., Fajkus M., Valicek P., Novak T. Utilization of Interoperability between the BACnet and KNX Technologies for Monitoring of Operational-Technical Functions in Intelligent Buildings by Means of the PI System SW Tool. IFAC-PapersOnLine. 2018;51:372–377. doi: 10.1016/j.ifacol.2018.07.182. DOI
Vanus J., Sykora J., Martinek R., Bilik P., Koval L., Zidek J., Fajkus M., Nedoma J. Use of the software PI system within the concept of smart cities; Proceedings of the 9th International Scientific Symposium on Electrical Power Engineering (ELEKTROENERGETIKA 2017); Stará Lesná, Slovakia. 12–14 September 2017.
Petnik J., Vanus J. Design of Smart Home Implementation within IoT with Natural Language Interface. IFAC-PapersOnLine. 2018;51:174–179. doi: 10.1016/j.ifacol.2018.07.149. DOI