A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28075341
PubMed Central
PMC5298684
DOI
10.3390/s17010111
PII: s17010111
Knihovny.cz E-zdroje
- Klíčová slova
- biomedical engineering, body temperature, fiber Bragg grating (FBG), heart rate (HR), magnetic resonance imaging (MRI), non-invasive measurements, patient monitoring, polydimethylsiloxane (PDMS), respiratory rate (RR), vital signs,
- MeSH
- dechová frekvence MeSH
- lidé MeSH
- monitorování fyziologických funkcí MeSH
- optická vlákna MeSH
- srdeční frekvence MeSH
- technologie optických vláken * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person's chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field.
Zobrazit více v PubMed
Liu Y., Norton J.J.S., Qazi R., Zou Z., Ammann K.R., Liu H., Yan L., Tran P.L., Jang K., Lee J.W., et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2016;2:e1601185. doi: 10.1126/sciadv.1601185. PubMed DOI PMC
Roriz P., Carvalho L., Frazao O., Santos J.L., Simoes J.A. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review. J. Biomech. 2014;47:1251–1261. doi: 10.1016/j.jbiomech.2014.01.054. PubMed DOI
Dziuda L. Fiber-optic sensors for monitoring patient physiological parameters: A review of applicable technologies and relevance to use during magnetic resonance imaging procedures. J. Biomech. 2015;20:010901. doi: 10.1117/1.JBO.20.1.010901. PubMed DOI
Chethana K., Guru Prasad A.S., Omkar S.N., Asokan S. Fiber bragg grating sensor based device for simultaneous measurement of respiratory and cardiac activities. J. Biophotonics. 2016 doi: 10.1002/jbio.201500268. PubMed DOI
Nishiyama M., Sonobe M., Watanabe K. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor. Biomed. Opt. Express. 2016;7:3675–3685. doi: 10.1364/BOE.7.003675. PubMed DOI PMC
Gurkan D., Starodubov D., Yuan X. Monitoring of the heartbeat sounds using an optical fiber Bragg grating sensor; Proceedings of the IEEE Sensors; Irvine, CA, USA. 31 October–3 November 2005; pp. 306–309.
Dziuda L., Krej M., Skibniewski F.W. Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI. IEEE Sens. J. 2013;13:4986–4991. doi: 10.1109/JSEN.2013.2279160. DOI
Ciocchetti M., Massaroni C., Saccomandi P., Caponero M.A., Polimadei A., Formica D., Schena E. Smart textile based on fiber bragg grating sensors for respiratory monitoring: Design and preliminary trials. Biosensors. 2015;5:602–615. doi: 10.3390/bios5030602. PubMed DOI PMC
Yang X., Chen Z., Elvin C.S.M., Janice L.H.Y., Ng S.H., Teo J.T., Wu R. Textile Fiber Optic Microbend Sensor Used for Heartbeat and Respiration Monitoring. IEEE Sens. J. 2015;15:757–761. doi: 10.1109/JSEN.2014.2353640. DOI
Ukasz Dziuda L., Skibniewski F.W., Krej M., Baran P.M. Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations. J. Biomed. Opt. 2013;18:057006. doi: 10.1117/1.JBO.18.5.057006. PubMed DOI
Chen Z.H., Teo J.T., Ng S.H., Yim H. Smart pillow for heart rate monitoring using a fiber optic sensor. In: Gannot I., editor. Optical Fibers, Sensors, and Devices for Biomedical Diagnostics and Treatment XI. SPIE Press; Bellingham, WA, USA: 2011.
Chen Z.H., Teo J.T., Yang X.F. In-bed fibre optic breathing and movement sensor for non-intrusive monitoring. In: Gannot I., editor. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications IX. SPIE Press; Bellingham, WA, USA: 2009.
Dzuida L., Skibniewski F.W., Krej M., Lewandowski J. Monitoring respiration and cardiac activity using fiber Bragg grating-based sensor. IEEE Trans. Biomed. Eng. 2012;59:1934–1942. doi: 10.1109/TBME.2012.2194145. PubMed DOI
Sprager S., Zazula D. Heartbeat and respiration detection from optical interferometric signals by using a multimethod approach. IEEE Trans. Biomed. Eng. 2012;59:2922–2929. doi: 10.1109/TBME.2012.2213302. PubMed DOI
Lau D., Chen Z., Teo J.T., Ng S.H., Rumpel H., Lian Y., Yang H., Kei P.L. Intensity-modulated microbend fiber optic sensor for respiratory monitoring and gating during MRI. IEEE Trans. Biomed. Eng. 2013;60:2655–2662. doi: 10.1109/TBME.2013.2262150. PubMed DOI
Grilett A., Kinet D., Witt J., Schukar M., Krebber K., Pirotte F., Depre A. Optical fiber sensors embedded into medical textiles for healthcare monitoring. IEEE Sens. J. 2008;8:1215–1222. doi: 10.1109/JSEN.2008.926518. DOI
Tosi D., Olivero M., Perrone G. Low-cost fiber bragg grating vibroacoustic sensor for voice and heartbeat detection. Appl. Opt. 2008;47:5123–5129. doi: 10.1364/AO.47.005123. PubMed DOI
Wo J., Wang H., Sun Q., Shum P.P., Liu D. Noninvasive respiration movement sensor based on distributed Bragg reflector fiber laser with beat frequency interrogation. J. Biomed. Opt. 2014;19:017003. doi: 10.1117/1.JBO.19.1.017003. PubMed DOI
Dziuda L., Skibniewski F.W. A new approach to ballistocardiographic measurements using fibre Bragg grating-based sensors. Biocybern. Biomed. Eng. 2014;34:101–106. doi: 10.1016/j.bbe.2014.02.001. DOI
Spillman W.B., Mayer M., Bennett J., Gong J., Meissner K.E., Davis B., Claus R.O., Muelenaer A.A., Jr., Xu X. A ‘smart’ bed for non-intrusive monitoring of patient physiological factors. J. Meas. Sci. Technol. 2004;15:1614–1620. doi: 10.1088/0957-0233/15/8/032. DOI
Witt J., Narbonneau F., Schukar M., Krebber K., De Jonckheere J., Jeanne M., Kinet D., Paquet B., Depré A., D’Angelo L.T., et al. Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement. IEEE Sens. J. 2012;12:246–254. doi: 10.1109/JSEN.2011.2158416. DOI
Chen Z., Lau D., Teo J.T., Ng S.H., Yang X., Kei P.L. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt. 2014;19:057001. doi: 10.1117/1.JBO.19.5.057001. PubMed DOI
Deepu C.J., Chen Z., Teo J.T., Ng S.H., Yang X., Lian Y. A smart cushion for real-time heart rate monitoring; Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS); Hsinchu, Taiwan. 28–30 November 2012; pp. 53–56.
Chen Z., Teo J.T., Ng S.H., Yang X. Plastic optical fiber microbend sensor used as breathing sensor; Proceedings of the IEEE Sensors; Taipei, Taiwan. 28–31 October 2012; pp. 1–4.
Nishyama M., Miyamoto M., Watanabe K. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity. J. Biomed. Opt. 2011;16:017002. doi: 10.1117/1.3528008. PubMed DOI
Sprager S., Donlagic D., Zazula D. Monitoring of basic human vital functions using optical interferometer; Proceedings of the IEEE ICSP; Beijing, China. 24–28 October 2010; pp. 1738–1741.
Favero F.C., Villatoro J., Pruneri V. Microstructured optical fiber interferometric breathing sensor. J. Biomed. Opt. 2012;17:037006. doi: 10.1117/1.JBO.17.3.037006. PubMed DOI
Will C., Shi K., Lurz F., Weigel R., Koelpin A. Intelligent signal processing routine for instantaneous heart rate detection using a Six-Port microwave interferometer; Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems; Bali, Indonesia. 9–12 November 2015; pp. 483–487.
Sprager S., Donlagic D., Zazula D. Estimation of heart rate, respiratory rate and motion by using optical interferometer as body sensor; Proceedings of the IASTED International Conference on Signal and Image Processing; Dallas, TX, USA. 14–16 December 2011; pp. 280–287.
Fajkus M., Nedoma J., Siska P., Vasinek V. FBG sensor of breathing encapsulated into polydimethylsiloxane; Proceedings of the SPIE—The International Society for Optical Engineering; Brussels, Belgium. 3–7 April 2016.
Rothmaier M., Selm B., Spichtig S., Haensse D., Wolf M. Photonic textiles for pulse oximetry. Opt. Express. 2008;16:12973–12986. doi: 10.1364/OE.16.012973. PubMed DOI
Witt J., Schukar M., Krebber K., Demuth J., Sasek L. Heart rate sensor for integration into personal protective equipment; Proceedings of the 20th International Conference on Plastic Optical Fibers; Bilbao, Spain. 14–16 September 2011; pp. 573–577.
Kersay A.D., Davis M.A., Patrick H.J., LeBlanc M., Koo K.P., Askins C.G., Putnam M.A., Friebele E.J. Fiber grating sensors. J. Lightwave Technol. 1997;15:1442–1463. doi: 10.1109/50.618377. DOI
Fajkus M., Navruz I., Kepak S., Davidson A., Siska P., Cubik J., Vasinek V. Capacity of wavelength and time division multiplexing for quasi-distributed measurement using fiber bragg gratings. Adv. Electr. Electron. Eng. 2015;13:575–582. doi: 10.15598/aeee.v13i5.1508. DOI
Nedoma J., Fajkus M., Bednarek L., Frnda J., Zavadil J., Vasinek V. Type of encapsulation of FBG sensor into the PDMS and its effect on spectral and power characteristics. Adv. Electr. Electron. Eng. 2016;14:460–466.
Fajkus M., Nedoma J., Kepak S., Rapant L., Martinek R., Bednarek L., Novak M., Vasinek V. Mathematical model of optimized design of multi-point sensoric measurement with Bragg gratings using wavelength divison multiplex; Proceedings of the SPIE—The International Society for Optical Engineering; Brussels, Belgium. 3–7 April 2016.
Bland J.M., Altman D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999;8:135–160. doi: 10.1191/096228099673819272. PubMed DOI
Mokhtar M.R., Sun T., Grattan K.T.V. Bragg Grating Packages with Nonuniform Dimensions for Strain and Temperature Sensing. IEEE Sens. J. 2012;12:139–144. doi: 10.1109/JSEN.2011.2134845. DOI
Lobodzinski S.S., Laks M.M. New devices for very long-term ECG monitoring. Cardiol. J. 2012;19:210–214. doi: 10.5603/CJ.2012.0039. PubMed DOI
Lobodzinski S.S. ECG patch monitors for assessment of cardiac rhythm abnormalities. Prog. Cardiovas. Dis. 2013;56:139–144. doi: 10.1016/j.pcad.2013.08.006. PubMed DOI
Summary of over Fifty Years with Brain-Computer Interfaces-A Review
Design of a New Method for Detection of Occupancy in the Smart Home Using an FBG Sensor