Comparative Effectiveness of ICA and PCA in Extraction of Fetal ECG From Abdominal Signals: Toward Non-invasive Fetal Monitoring

. 2018 ; 9 () : 648. [epub] 20180530

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29899707

Non-adaptive signal processing methods have been successfully applied to extract fetal electrocardiograms (fECGs) from maternal abdominal electrocardiograms (aECGs); and initial tests to evaluate the efficacy of these methods have been carried out by using synthetic data. Nevertheless, performance evaluation of such methods using real data is a much more challenging task and has neither been fully undertaken nor reported in the literature. Therefore, in this investigation, we aimed to compare the effectiveness of two popular non-adaptive methods (the ICA and PCA) to explore the non-invasive (NI) extraction (separation) of fECGs, also known as NI-fECGs from aECGs. The performance of these well-known methods was enhanced by an adaptive algorithm, compensating amplitude difference and time shift between the estimated components. We used real signals compiled in 12 recordings (real01-real12). Five of the recordings were from the publicly available database (PhysioNet-Abdominal and Direct Fetal Electrocardiogram Database), which included data recorded by multiple abdominal electrodes. Seven more recordings were acquired by measurements performed at the Institute of Medical Technology and Equipment, Zabrze, Poland. Therefore, in total we used 60 min of data (i.e., around 88,000 R waves) for our experiments. This dataset covers different gestational ages, fetal positions, fetal positions, maternal body mass indices (BMI), etc. Such a unique heterogeneous dataset of sufficient length combining continuous Fetal Scalp Electrode (FSE) acquired and abdominal ECG recordings allows for robust testing of the applied ICA and PCA methods. The performance of these signal separation methods was then comprehensively evaluated by comparing the fetal Heart Rate (fHR) values determined from the extracted fECGs with those calculated from the fECG signals recorded directly by means of a reference FSE. Additionally, we tested the possibility of non-invasive ST analysis (NI-STAN) by determining the T/QRS ratio. Our results demonstrated that even though these advanced signal processing methods are suitable for the non-invasive estimation and monitoring of the fHR information from maternal aECG signals, their utility for further morphological analysis of the extracted fECG signals remains questionable and warrants further work.

Zobrazit více v PubMed

(2014). Non-InvasiveFetal Ecg Analysis. Available online at: https://physionet.org/lightwave/?db=challenge/2013/set-a

Abburi R., Chandrasekhara Sastry A. S. (2012). Fpga based fetal ecg feature extraction for prenatal monitoring using hybrid method. J. Adv. Res. Dyn. Control Syst. 9, 69–90.

Al-Zaben A., Al-Smadi A. (2006). Extraction of foetal ECG by combination of singular value decomposition and neuro-fuzzy inference system. Phys. Med. Biol. 51, 137–143. 10.1088/0031-9155/51/1/010 PubMed DOI

Amer-Wåhlin I., Hellsten C., Norén H., Hagberg H., Herbst A., Kjellmer I., Lilja H., et al. . (2001). Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomised controlled trial. Lancet 358, 534–538. 10.1016/S0140-6736(01)05703-8 PubMed DOI

Amin M., Mamun M., Hashim F., Husain H. (2011). Separation of fetal electrocardiography (ECG) from composite ECG using adaptive linear neural network for fetal monitoring. Int. J. Phys. Sci. 6, 5871–5876. 10.5897/IJPS11.1432 DOI

Assaleh K. (2007). Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference systems. IEEE Trans. Biomed. Eng. 54, 59–68. 10.1109/TBME.2006.883728 PubMed DOI

Ayres-De-Campos D., Spong C., Chandraharan E. (2015). FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int. J. Gynecol. Obstet. 131, 13–24. 10.1016/j.ijgo.2015.06.020 PubMed DOI

Behar J., Oster J., Clifford G. (2013). Non-invasive FECG extraction from a set of abdominal sensors, in Computing in Cardiology, Vol. 40 (Zaragoza: ).

Behar J., Oster J., Clifford G. (2014). Combining and benchmarking methods offoetal ecg extraction without maternal or scalp electrode data. Physiol. Meas. 35, 1569–1589. 10.1088/0967-3334/35/8/1569 PubMed DOI

Bensafia K., Mansour A., Haddab S. (2017). Blind source subspace separation and classification of ECG signals, in ATS 2017, (Sousse: ).

Bernardes J., Costa-Pereira A., Ayres-De-Campos D., Van Geijn H., Pereira-Leite L. (1997). Evaluation of interobserver agreement of cardiotocograms. Int. J. Gynecol. Obstet. 57, 33–37. 10.1016/S0020-7292(97)02846-4 PubMed DOI

Billeci L., Maurizio V. (2017). A combined independent source separation and quality index optimization method for fetal ecg extraction from abdominal maternal leads. Sensors 17:1135. 10.3390/s17051135 PubMed DOI PMC

Blackwell S., Grobman W., Antoniewicz L., Hutchinson M., Bannerman C. (2011). Interobserver and intraobserver reliability of the NICHD 3-Tier Fetal Heart Rate Interpretation System. Am. J. Obstet. Gynecol. 205, 378.e1-5. 10.1016/j.ajog.2011.06.086 PubMed DOI

Blix E., Sviggum O., Koss K., Øian P. (2003). Inter-observer variation in assessment of 845 labour admission tests: comparison between midwives and obstetricians in the clinical setting and two experts. BJOG 110, 1–5. 10.1046/j.1471-0528.2003.t01-1-02105.x PubMed DOI

Bsoul A. (2015). A simple noninvasive approach for fetal electrocardiogram extraction based on wavelet transform, in 2015 International Conference on Advances in Biomedical Engineering, ICABME 2015 (Beirut: ).

Burattini L., Agostinelli A., Grillo M., Biagini A., Giuliani C., Burattini L., et al. . (2015). Noninvasive fetal electrocardiography: an overview of the signal electrophysiological meaning, recording procedures, and processing techniques. Ann. Noninvasive Electrocardiol. 20, 303–313. 10.1111/anec.12259 PubMed DOI PMC

Castillo E., Morales D., Botella G., García A., Parrilla L., Palma A. (2013). Efficient wavelet-based ecg processing for single-lead fhr extraction. Digital Signal Process. 23, 1897–1909. 10.1016/j.dsp.2013.07.010 DOI

Černošek A., Krajča V., Mohylová J., Petránek S., Matoušek M., Paul K. (2000). Estimation of the Time Delay of Epileptic Spikes by ICA, Berlin, Heidelberg: Springer Berlin Heidelberg; 34–42.

Chandraharan E., Arulkumaran S. (2007). Prevention of birth asphyxia: responding appropriately to cardiotocograph (CTG) traces. Best Pract. Res. Clin. Obstet. Gynaecol. 21, 609–624. 10.1016/j.bpobgyn.2007.02.008 PubMed DOI

Czabanski R., Jezewski M., Wrobel J., Horoba K., Jezewski J. (2008). A neuro-fuzzy approach to the classification of fetal cardiotocograms, in IFMBE Proceedings, Vol. 20 (Berlin; Heidelberg: IFMBE; ).

Datian Y., Xuemei O. (1996). Application of wavelet analysis in detection of fetal ECG, in Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, Vol. 3 (Amsterdam: ).

De Araujo D., Barros A., Estombelo-Montesco C., Zhao H., Da Silva Filho A., Baffa O., et al. . (2005). Fetal source extraction from magnetocardiographic recordings by dependent component analysis. Phys. Med. Biol. 50, 4457–4464. 10.1088/0031-9155/50/19/002 PubMed DOI

De Lathauwer L., De Moor B., Vandewalle J. (2000). Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans. Biomed. Eng. 47, 567–572. 10.1109/10.841326 PubMed DOI

Diamantaras K. I., Kung S. Y. (1996). Principal Component Neural Networks: Theory and Applications. New York, NY: John Wiley & Sons, Inc.

Fajkus M., Nedoma J., Martinek R., Vasinek V., Nazeran H., Siska P. (2017). A non-invasive multichannel hybrid fiber-optic sensor system for vital sign monitoring. Sensors (Switzerland) 17:111. 10.3390/s17010111 PubMed DOI PMC

Fatemi M., Sameni R. (2017). An online subspace denoising algorithm for maternal ecg removal from fetal ecg signals. Iran. J. Sci. Technol. Trans. Electr. Eng. 41, 65–79. 10.1007/s40998-017-0018-4 DOI

Gurve D., Pant J. K., Krishnan S. (2017). Real-time fetal ecg extraction from multichannel abdominal ecg using compressive sensing and ica, in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Seogwipo: ), 2794–2797. PubMed

Hasan M., Ibrahimy M., Reaz M. (2009a). Fetal ECG extraction from maternal abdominal ECG using neural network. J. Softw. Eng. Appl. 2, 330–334. 10.4236/jsea.2009.25043 DOI

Hasan M., Reaz M., Ibrahimy M., Hussain M., Uddin J. (2009b). Detection and processing techniques of FECG signal for fetal monitoring. Biol. Proced. Online 11, 263–295. 10.1007/s12575-009-9006-z PubMed DOI PMC

Hassanpour H., Parsaei A. (2007). Fetal ECG extraction using wavelet transform, in CIMCA 2006: International Conference on Computational Intelligence for Modelling, Control and Automation, Jointly with IAWTIC 2006: International Conference on Intelligent Agents Web Technologies (Pune: ).

Hon E., Lee S. (1963). NOISE REDUCTION IN FETAL ELECTROCARDIOGRAPHY. II. AVERAGING TECHNIQUES. Am. J. Obstet. Gynecol. 87, 1086–1096. 10.1016/0002-9378(63)90104-2 PubMed DOI

Hon E., Lee S. (1964). Averaging techniques in fetal electrocardiography. Med. Electr. Biol. Eng. 2, 71–76. 10.1007/BF02474362 PubMed DOI

Hruban L., Spilka J., Chudáček V., Janku° P., Huptych M., Burša M., et al. . (2015). Agreement on intrapartum cardiotocogram recordings between expert obstetricians. J. Eval. Clin. Pract. 21, 694–702. 10.1111/jep.12368 PubMed DOI

Hyvärinen A., Oja E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Comput. 9, 1483–1492. 10.1162/neco.1997.9.7.1483 PubMed DOI

Hyvarinen A., Oja E. (2000). Independent component analysis: algorithms and applications. Neural Networks 13, 411–430. 10.1016/S0893-6080(00)00026-5 PubMed DOI

Ivanushkina N., Ivanko K., Lysenko E., Borovskiy I., Panasiuk O. (2014). Fetal electrocardiogram extraction from maternal abdominal signals, in 2014 IEEE 34th International Scientific Conference on Electronics and Nanotechnology, ELNANO 2014-Conference Proceedings (Kyiv: ).

Jezewski J., Horoba K., Roj D., Wrobel J., Kupka T., Matonia A. (2016). Evaluating the fetal heart rate baseline estimation algorithms by their influence on detection of clinically important patterns. Biocybern. Biomed. Eng. 36, 562–573. 10.1016/j.bbe.2016.06.003 DOI

Jezewski J., Matonia A., Kupka T., Roj D., Czabanski R. (2012). Determination of fetal heart rate from abdominal signals: Evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomed. Tech. 57, 562–573. 10.1515/bmt-2011-0130 PubMed DOI

Jezewski J., Wrobel J., Horoba K., Gacek A., Sikora J. (2002). Fetal heart rate variability: clinical experts versus computerized system interpretation, in Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, Vol. 2 (Houston, TX: ).

Jezewski J., Wrobel J., Matonia A., Horoba K., Martinek R., Kupka T., et al. . (2017). Is abdominal fetal electrocardiography an alternative to doppler ultrasound for FHR variability evaluation? Front. Physiol. 8:305. 10.3389/fphys.2017.00305 PubMed DOI PMC

Jia W., Yang C., Zhong G., Zhou M., Wu S. (2010). Fetal ECG extraction based on adaptive linear neural network, in Proceedings-2010 3rd International Conference on Biomedical Engineering and Informatics, BMEI 2010, Vol. 2 (Yantai: ).

Jolliffe I. T. (2002). Principal component analysis and factor analysis, in Principal Component Analysis and Factor Analysis (New York, NY: ).

Kahankova R., Jaros R., Martinek R., Jezewski J., Wen H., Jezewski M., et al. (2017a). Non-adaptive methods of fetal ecg signal processing. Adv. Electr. Electron. Eng. 15:476 10.15598/aeee.v15i3.2196 DOI

Kahankova R., Jaros R., Martinek R., Jezewski J., Wen H., Jezewski M., et al. (2017b). Non-adaptive methods of fetal ECG signal processing. Adv. Electr. Electron. Eng. 15, 476–490. 10.15598/aeee.v15i3.2196 DOI

Kahankova R., Jezewski J., Nedoma J., Jezewski M., Fajkus M., Kawala-Janik A., et al. (2017c). Influence of gestation age on the performance of adaptive systems for fetal ECG extraction. Adv. Electr. Electron. Eng. 15, 491–501. 10.15598/aeee.v15i3.2207 DOI

Kahankova R., Martinek R., Bilik P. (2017d). Fetal ecg extraction from abdominal ecg using rls based adaptive algorithms, in 2017 18th International Carpathian Control Conference (ICCC) (Sinaia: ), 337–342.

Kahankova R., Martinek R., Bilik P. (2018). Non-invasive Fetal ECG Extraction from Maternal Abdominal ECG Using LMS and RLS Adaptive Algorithms, Cham: Springer International Publishing; 258–271.

Kam A., Cohen A. (1999). Detection of fetal ecg with iir adaptive filtering and genetic algorithms, in 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), Vol. 4 (Phoenix, AZ: ) 2335–2338.

Kanjilal P., Palit S., Saha G. (1997). Fetal ecg extraction from single-channel maternal ecg using singular value decomposition. IEEE Trans. Biomed. Eng. 44, 51–59. 10.1109/10.553712 PubMed DOI

Karhunen J. (1996). Neural Approaches to Independent Component Analysis and Source Separation. Bruges:ESANN, 249–266.

Karvounis E., Papaloukas C., Fotiadis D., Michails L. (2004). Fetal heart rate extraction from composite maternal ECG using complex continuous wavelet transform, in Computers in Cardiology, Vol. 31 (Chicago, IL: ).

Lee T., Girolami M., Sejnowski T. (1998). Independent Component Analysis, Theory and Applications. Boston, MA: Kluwer Academic Publishers.

Lhotská L., Krajca V., Mohylová J., Petránek S., Gerla V. (2009). EEG data mining using PCA in Data Mining and Medical Knowledge Management: Cases and Applications (IGI; ), 161–180.

Marossero D., Erdogmus D., Euliano N., Principe J., Hild K. (2003). Independent components analysis for fetal electrocardiogram extraction: a case for the data efficient mermaid algorithm, in Neural Networks for Signal Processing-Proceedings of the IEEE Workshop, Vol. 2003 (Toulouse: ).

Martín-Clemente R., Camargo-Olivares J., Hornillo-Mellado S., Elena M., Román I. (2011). Fast technique for noninvasive fetal ECG extraction. IEEE Trans. Biomed. Eng. 58, 227–230. 10.1109/TBME.2010.2059703 PubMed DOI

Martinek R., Kahankova R., Nazeran H., Konecny J., Jezewski J., Janku P., et al. . (2017a). Non-invasive fetal monitoring: a maternal surface ECG electrode placement-based novel approach for optimization of adaptive filter control parameters using the LMS and RLS algorithms. Sensors 17:E1154. 10.3390/s17051154 PubMed DOI PMC

Martinek R., Kahankova R., Skutova H., Koudelka P., Zidek J., Koziorek J. (2016a). Adaptive signal processing techniques for extracting abdominal fetal electrocardiogram, in 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2016 (Prague: ).

Martinek R., Kelnar M., Koudelka P., Vanus J., Bilik P., Janku P., et al. . (2016b). A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator. Physiol. Meas. 37, 238–256. 10.1088/0967-3334/37/2/238 PubMed DOI

Martinek R., Kelnar M., Vanus J., Bilik P., Zidek J. (2015a). A robust approach for acoustic noise suppression in speech using ANFIS. J. Electr. Eng. 66, 301–310. 10.2478/jee-2015-0050 DOI

Martinek R., Kelnar M., Vojcinak P., Koudelka P., Vanus J., Bilik P., et al. (2015b). Virtual simulator for the generation of patho-physiological foetal ECGs during the prenatal period. Electron. Lett. 51, 1738–1740. 10.1049/el.2015.2291 DOI

Martinek R., Nedoma J., Fajkus M., Kahankova R., Konecny J., Janku P., et al. . (2017b). A phonocardiographic-based fiber-optic sensor and adaptive filtering system for noninvasive continuous fetal heart rate monitoring. Sensors 17:E890. 10.3390/s17040890 PubMed DOI PMC

Martinek R., Skutova H., Kahankova R., Koudelka P., Bilik P., Koziorek J. (2016c). Fetal ECG extraction based on adaptive neuro-fuzzy interference system, in 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2016 (Prague: ).

Martinek R., Vanus J., Kelnar M., Bilik P., Zidek J. (2015c). Application of recursive least square algorithm to adaptive channel equalization, in XXI IMEKO World Congress “Measurement in Research and Industry” (Prague: ).

Martinek R., Zidek J. (2012). Refining the diagnostic quality of the abdominal fetal electrocardiogram using the techniques of artificial intelligence | Poprawa jakości sygnału elektrokardiogramu płodu przy wykorzystaniu narze{ogonek}dzi sztucznej inteligencji. Przeglad Elektrotechniczny (Electr. Rev.) 88, 155–160.

Martinek R., Zidek J. (2014). The real implementation of ANFIS channel equalizer on the system of software-defined radio. IETE J. Res. 60, 83–193. 10.1080/03772063.2014.914698 DOI

Matonia A., Jezewski J., Kupka T., Horoba K., Wrobel J., Gacek A. (2006). The influence of coincidence of fetal and maternal QRS complexes on fetal heart rate reliability. Med. Biol. Eng. Comput. 44, 393–403. 10.1007/s11517-006-0054-0 PubMed DOI

Mochimaru F., Fujimoto Y., Ishikawa Y. (2004). The fetal electrocardiogram by independent component analysis and wavelets. Jpn J. Physiol. 54, 457–463. 10.2170/jjphysiol.54.457 PubMed DOI

Mohylova J., Cernosek A., Krajca V. (2001). Application independent component analysis in biomedical practice, in 24th Seminar on Fundamentals of Electrotechnics and Circuit Theory, 489–492.

Myles P., Cui J. (2007). I. Using the Bland-Altman method to measure agreement with repeated measures. Br. J. Anaesth. 99, 309–311. 10.1093/bja/aem214 PubMed DOI

Najafabadi F., Zahedi E., Mohd Ali M. (2006). Fetal heart rate monitoring based on independent component analysis. Comput. Biol. Med. 36, 241–252. 10.1016/j.compbiomed.2004.11.004 PubMed DOI

Neilson J. (2006). Fetal electrocardiogram (ECG) for fetal monitoring during labour. Cochrane Database Syst. Rev. 3:CD000116 10.1002/14651858.CD000116.pub2 PubMed DOI

Niknazar M., Rivet B., Jutten C. (2013). Fetal ECG extraction by extended state kalman filtering based on single-channel recordings. IEEE Trans. Biomed. Eng. 60, 1345–1352. 10.1109/TBME.2012.2234456 PubMed DOI

Pan J., Tompkins W. J. (1985). A real-time qrs detection algorithm. IEEE Trans. Biomed. Eng. 32, 230–236. 10.1109/TBME.1985.325532 PubMed DOI

Peters M., Crowe J., Piéri J.-F., Quartero H., Hayes-Gill B., James D., et al. . (2001). Monitoring the fetal heart non-invasively: a review of methods. J. Perinat. Med. 29, 408–416. 10.1515/JPM.2001.057 PubMed DOI

Poularikas A., Zayed M. (2006). Adaptive Filtering Primer with MATLAB. CRC Press.

Reaz M., Wei L. (2004). Adaptive linear neural network filter for fetal ECG extraction, in Proceedings of International Conference on Intelligent Sensing and Information Processing, ICISIP 2004 (Chennai: ).

Reinhard J., Hayes-Gill B., Schiermeier S., Hatzmann H., Heinrich T., Louwen F. (2013). Intrapartum heart rate ambiguity: a comparison of cardiotocogram and abdominal fetal electrocardiogram with maternal electrocardiogram. Gynecol. Obstet. Invest. 75, 101–108. 10.1159/000345059 PubMed DOI

Reinhard J., Hayes-Gill B., Schiermeier S., Hatzmann W., Herrmann E., Heinrich T., et al. . (2012). Intrapartum signal quality with external fetal heart rate monitoring: a two way trial of external Doppler CTG ultrasound and the abdominal fetal electrocardiogram. Arch. Gynecol. Obstet. 286, 1103–1107. 10.1007/s00404-012-2413-4 PubMed DOI

Rosen K., Arulkumaran S., Greene K., Lilja H., Lindecrantz K., Seneviratne H., et al. (1992). Clinical validity of fetal ecg waveform analysis. Perinatology 26, 95–110.

Sameni R., Clifford G. D. (2010). A Review of fetal ECG signal processing; issues and promising Directions. Open Pacing Electrophysiol. Ther. J. 1, 4–20. 10.2174/1876536X01003010004 PubMed DOI PMC

Sameni R., Jutten C., Shamsollahi M. (2007). What ICA provides for ECG processing: application to noninvasive fetal ECG extraction, in Sixth IEEE International Symposium on Signal Processing and Information Technology, ISSPIT (Vancouver, BC: ).

Samuel O., Asogbon G., Sangaiah A., Fang P., Li G. (2017). An integrated decision support system based on ann and fuzzy-ahp for heart failure risk prediction. Exp. Syst. Appl. 68, 163–172. 10.1016/j.eswa.2016.10.020 DOI

Shadaydeh M., Xiao Y., Ward R. (2008). Extraction of fetal ECG using adaptive Volterra filters, in European Signal Processing Conference (Lausanne: ).

Soong A., Koles Z. (1995). Principal-component localization of the sources of the background eeg. IEEE Trans. Biomed. Eng. 42, 59–67. 10.1109/10.362918 PubMed DOI

Swarnalatha R., Prasad D. (2010). A novel technique for extraction of FECG using multi stage adaptive filtering. J. Appl. Sci. 10, 319–324. 10.3923/jas.2010.319.324 DOI

Sweha A., Hacker T., Nuovo J. (1999). Interpretation of the electronic fetal heart rate during labor. Am. Family Phys. 59, 2487–2500. PubMed

Talha M., Guettouche M., Bousbia-Salah A. (2010). Combination of a FIR filter with a genetic algorithm for the extraction of a fetal ECG, in Conference Record-Asilomar Conference on Signals, Systems and Computers (Pacific Grove, CA: ).

Tsui S.-Y., Liu C.-S., Lin C.-W. (2017). Modified maternal ecg cancellation for portable fetal heart rate monitor. Biomed. Signal Proc. and Control 32, 76–81. 10.1016/j.bspc.2016.11.001 DOI

Vayssière C., Arnaud C., Pirrello O., Goffinet F. (2010). Inter-observer agreement in clinical decision-making for abnormal cardiotocogram during labour: a comparison between CTG and CTG plus STAN. BJOG 117, 1081–1087. 10.1111/j.1471-0528.2009.02392.x PubMed DOI

Vintzileos A., Nochimson D., Guzmana E., Knuppel A., Lake M., Schifrin B. (1995). Intrapartum electronic fetal heart rate monitoring versus intermittent auscultation: a meta-analysis. Obstet. Gynecol. 85, 149–155. 10.1016/0029-7844(94)00320-D PubMed DOI

Viunytskyi O., Shulgin V. (2017). Signal processing techniques for fetal electrocardiogram extraction and analysis, in 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO) (Kiev: ), 325–328.

Vrins F., Jutten C., Verleysen M. (2004). Sensor Array and Electrode Selection for Non-invasive Fetal Electrocardiogram Extraction by Independent Component Analysis, Berlin, Heidelberg: Springer Berlin Heidelberg; 1017–1024. 10.1007/978-3-540-30110-3_128 DOI

Wei Z., Xueyun W., Jian Z., Hongxing L. (2013). Noninvasive fetal ECG estimation using adaptive comb filter. Comput. Methods Programs Biomed. 112, 125–134. 10.1016/j.cmpb.2013.07.015 PubMed DOI

Williams B., Arulkumaran S. (2004). Cardiotocography and medicolegal issues. Best Pract. Res. Clin. Obstet. Gynaecol. 18, 457–466. 10.1016/j.bpobgyn.2004.02.005 PubMed DOI

Wróbel J., Horoba K., Pander T., Jezewski J., Czabański R. (2013). Improving fetal heart rate signal interpretation by application of myriad filtering. Biocybernet. Biomed. Eng. 33, 211–221. 10.1016/j.bbe.2013.09.004 DOI

Wrobel J., Roj D., Jezewski J., Horoba K., Kupka T., Jezewski M. (2015). Evaluation of the robustness of fetal heart rate variability measures to low signal quality. J. Med. Imaging Health Inform. 5, 1311–1318. 10.1166/jmihi.2015.1534 DOI

Zhang N., Zhang J., Li H., Mumini O., Samuel O., Ivanov K., Wang L. (2017). A novel technique for fetal ecg extraction using single-channel abdominal recording. Sensors 17:E457. 10.3390/s17030457 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...