Optimization of adaptive filter control parameters for non-invasive fetal electrocardiogram extraction
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35404946
PubMed Central
PMC9000127
DOI
10.1371/journal.pone.0266807
PII: PONE-D-21-24207
Knihovny.cz E-resources
- MeSH
- Algorithms MeSH
- Electrocardiography * methods MeSH
- Humans MeSH
- Least-Squares Analysis MeSH
- Fetal Monitoring methods MeSH
- Fetus physiology MeSH
- Signal Processing, Computer-Assisted * MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters of different hybrid systems used for non-invasive fetal electrocardiogram (fECG) extraction. The tested hybrid systems consist of two different blocks, first for maternal component estimation and second, so-called adaptive block, for maternal component suppression by means of an adaptive algorithm (AA). Herein, we tested and optimized four different AAs: Adaptive Linear Neuron (ADALINE), Standard Least Mean Squares (LMS), Sign-Error LMS, Standard Recursive Least Squares (RLS), and Fast Transversal Filter (FTF). The main criterion for optimal parameter selection was the F1 parameter. We conducted experiments using real signals from publicly available databases and those acquired by our own measurements. Our optimization method enabled us to find the corresponding optimal settings for individual adaptive block of all tested hybrid systems which improves achieved results. These improvements in turn could lead to a more accurate fetal heart rate monitoring and detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to find optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing and analysis, opening new diagnostic possibilities of non-invasive fetal electrocardiography.
See more in PubMed
Clifford GD, Silva I, Behar J, Moody GB. Non-invasive fetal ECG analysis. Physiological measurement. 2014;35(8):1521. doi: 10.1088/0967-3334/35/8/1521 PubMed DOI PMC
Kahankova R, Martinek R, Jaros R, Behbehani K, Matonia A, Jezewski M, et al.. A review of signal processing techniques for non-invasive fetal electrocardiography. IEEE reviews in biomedical engineering. 2019;13:51–73. doi: 10.1109/RBME.2019.2938061 PubMed DOI
Jezewski J, Wrobel J, Matonia A, Horoba K, Martinek R, Kupka T, et al.. Is abdominal fetal electrocardiography an alternative to doppler ultrasound for FHR variability evaluation? Frontiers in physiology. 2017;8:305. doi: 10.3389/fphys.2017.00305 PubMed DOI PMC
Andreotti F, Riedl M, Himmelsbach T, Wedekind D, Wessel N, Stepan H, et al.. Robust fetal ECG extraction and detection from abdominal leads. Physiological measurement. 2014;35(8):1551. doi: 10.1088/0967-3334/35/8/1551 PubMed DOI
Silva I, Behar J, Sameni R, Zhu T, Oster J, Clifford GD, et al. Noninvasive fetal ECG: the PhysioNet/computing in cardiology challenge 2013. In: Computing in Cardiology 2013. IEEE; 2013. p. 149–152. PubMed PMC
Behar J, Johnson A, Clifford GD, Oster J. A comparison of single channel fetal ECG extraction methods. Annals of biomedical engineering. 2014;42(6):1340–1353. doi: 10.1007/s10439-014-0993-9 PubMed DOI
Martinek R, Kahankova R, Nazeran H, Konecny J, Jezewski J, Janku P, et al.. Non-Invasive Fetal Monitoring. Sensors. 2017;17(5):1–31. doi: 10.3390/s17051154 PubMed DOI PMC
Hu J, He H, Wei Z, Li Y. Disturbance-immune and aging-robust internal short circuit diagnostic for lithium-ion battery. IEEE Transactions on Industrial Electronics. 2021;69(2):1988–1999. doi: 10.1109/TIE.2021.3063968 DOI
Wei Z, Zhao D, He H, Cao W, Dong G. A noise-tolerant model parameterization method for lithium-ion battery management system. Applied Energy. 2020;268:114932. doi: 10.1016/j.apenergy.2020.114932 DOI
Barnova K, Martinek R, Jaros R, Kahankova R. Hybrid Methods Based on Empirical Mode Decomposition for Non-Invasive Fetal Heart Rate Monitoring. IEEE Access. 2020;8:51200–51218. doi: 10.1109/ACCESS.2020.2980254 DOI
Barnova K, Martinek R, Jaros R, Kahankova R, Matonia A, Jezewski M, et al.. A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction. PloS one. 2021;16(8):e0256154. doi: 10.1371/journal.pone.0256154 PubMed DOI PMC
Jaros R, Martinek R, Kahankova R, Koziorek J. Novel Hybrid Extraction Systems for Fetal Heart Rate Variability Monitoring Based on Non-Invasive Fetal Electrocardiogram. IEEE Access. 2019;7:131758–131784. doi: 10.1109/ACCESS.2019.2933717 DOI
Jaros R, Martinek R, Kahankova R, Danys L, Baros J, Ladrova M, et al.. Optimization of RLS Algorithm for Hybrid Method ICA-RLS. IFAC-PapersOnLine. 2019;52(27):530–535. doi: 10.1016/j.ifacol.2019.12.718 DOI
Gupta A, Srivastava M, Khandelwal V, Gupta A. A novel approach to fetal ECG extraction and enhancement using blind source separation (BSS-ICA) and adaptive fetal ECG enhancer (AFE). In: 2007 6th International Conference on Information, Communications & Signal Processing. IEEE; 2007. p. 1–4.
Martinek R, Kahankova R, Jaros R, Barnova K, Matonia A, Jezewski M, et al.. Non-Invasive Fetal Electrocardiogram Extraction Based on Novel Hybrid Method for Intrapartum ST Segment Analysis. IEEE Access. 2021;9:28608–28631. doi: 10.1109/ACCESS.2021.3058733 DOI
Martinek R, Kahankova R, Jezewski J, Jaros R, Mohylova J, Fajkus M, et al.. Comparative Effectiveness of ICA and PCA in Extraction of Fetal ECG From Abdominal Signals. Frontiers in Physiology. 2018-May-30;9(648):1–25. doi: 10.3389/fphys.2018.00648 PubMed DOI PMC
Kahankova R, Jaros R, Martinek R, Jezewski J, Wen H, Jezewski M, et al.. Non-Adaptive Methods of Fetal ECG Signal Processing. Advances in Electrical and Electronic Engineering. 2017-October-01;15(3):476–490. doi: 10.15598/aeee.v15i3.2196 DOI
Swarnalath R, Prasad D. Maternal ECG cancellation in abdominal signal using ANFIS and wavelets. Journal of applied sciences. 2010;10(11):868–877. doi: 10.3923/jas.2010.868.877 DOI
Wu S, Shen Y, Zhou Z, Lin L, Zeng Y, Gao X. Research of fetal ECG extraction using wavelet analysis and adaptive filtering. Computers in biology and medicine. 2013;43(10):1622–1627. doi: 10.1016/j.compbiomed.2013.07.028 PubMed DOI
Mahil J, Raja TSR, et al.. Optimization algorithms for adaptive filtering of interferences in corrupted signal. Indian Journal of Pure & Applied Physics (IJPAP). 2015;53(4):274–281.
Al-Sheikh B, Salman MS, Eleyan A, Alboon S. Non-invasive fetal ECG extraction using discrete wavelet transform recursive inverse adaptive algorithm. Technology and Health Care. 2020;28(5):507–520. doi: 10.3233/THC-191948 PubMed DOI
Akhavan-Amjadi M. Fetal electrocardiogram modeling using hybrid evolutionary firefly algorithm and extreme learning machine. Multidimensional Systems and Signal Processing. 2020;31(1):117–133. doi: 10.1007/s11045-019-00653-8 DOI
Ruan H, He H, Wei Z, Quan Z, Li Y. State of health estimation of lithium-ion battery based on constant-voltage charging reconstruction. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2021;. doi: 10.1109/JESTPE.2021.3098836 DOI
He J, Wei Z, Bian X, Yan F. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model. IEEE Transactions on Transportation Electrification. 2020;6(2):417–426. doi: 10.1109/TTE.2020.2994543 DOI
Vaseghi SV. Advanced digital signal processing and noise reduction. 2nd ed. Chichester: John Wiley & Sons; 2000.
Sayed AH. Adaptive filters. John Wiley & Sons; 2011.
Haykin SS, Widrow B, Widrow B. Least-mean-square adaptive filters. vol. 31. Wiley Online Library; 2003.
Haykin S. Adaptive filters. Signal Processing Magazine. 1999;6(1).
Jezewski J, Matonia A, Kupka T, Roj D, Czabanski R. Determination of fetal heart rate from abdominal signals. Biomedizinische Technik/Biomedical Engineering. 2012-January-01;57(5):383–394. doi: 10.1515/bmt-2011-0130 PubMed DOI
Matonia A, Jezewski J, Kupka T, Jezewski M, Horoba K, Wrobel J, et al.. Fetal electrocardiograms, direct and abdominal with reference heartbeat annotations. Scientific Data. 2020;7(1):1–14. doi: 10.1038/s41597-020-0538-z PubMed DOI PMC
Dessì A, Pani D, Raffo L. An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings. Physiological Measurement. 2014-August-01;35(8):1621–1636. doi: 10.1088/0967-3334/35/8/1621 PubMed DOI
Rodrigues R. Fetal beat detection in abdominal ECG recordings: global and time adaptive approaches. Physiological Measurement. 2014-August-01;35(8):1699–1711. doi: 10.1088/0967-3334/35/8/1699 PubMed DOI
Da Poian G, Bernardini R, Rinaldo R. Separation and analysis of fetal-ECG signals from compressed sensed abdominal ECG recordings. IEEE Transactions on Biomedical Engineering. 2015;63(6):1269–1279. doi: 10.1109/TBME.2015.2493726 PubMed DOI
Li R, Frasch MG, Wu HT. Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via diffusion-based channel selection. Frontiers in physiology. 2017;8:277. doi: 10.3389/fphys.2017.00277 PubMed DOI PMC
Su L, Wu HT. Extract fetal ECG from single-lead abdominal ECG by de-shape short time Fourier transform and nonlocal median. Frontiers in Applied Mathematics and Statistics. 2017;3:2. doi: 10.3389/fams.2017.00002 DOI
Andreotti F, Behar J, Zaunseder S, Oster J, Clifford GD. An open-source framework for stress-testing non-invasive foetal ECG extraction algorithms. Physiological measurement. 2016;37(5):627. doi: 10.1088/0967-3334/37/5/627 PubMed DOI
Krupa AJD, Dhanalakshmi S, Sanjana N, Manivannan N, Kumar R, Tripathy S. Fetal heart rate estimation using fractional Fourier transform and wavelet analysis. Biocybernetics and Biomedical Engineering. 2021;41(4):1533–1547. doi: 10.1016/j.bbe.2021.09.006 DOI
Zhong W, Cao Z, Ding W, Guo X, Wang G. A tree-search method for single-channel fetal QRS complexes detection in fetal heart rate monitoring. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2018. p. 1139–1142.
Castillo E, Morales DP, García A, Parrilla L, Ruiz VU, Álvarez-Bermejo JA. A clustering-based method for single-channel fetal heart rate monitoring. PLoS One. 2018;13(6):e0199308. doi: 10.1371/journal.pone.0199308 PubMed DOI PMC
Zhong W, Liao L, Guo X, Wang G. Fetal electrocardiography extraction with residual convolutional encoder-decoder networks. Australasian physical & engineering sciences in medicine. 2019;42(4):1081–1089. doi: 10.1007/s13246-019-00805-x PubMed DOI
Barnova K, Martinek R, Jaros R, Kahankova R, Behbehani K, Snasel V. System for adaptive extraction of non-invasive fetal electrocardiogram. Applied Soft Computing. 2021;113:107940. doi: 10.1016/j.asoc.2021.107940 DOI