The independent component analysis (ICA) based methods are among the most prevalent techniques used for non-invasive fetal electrocardiogram (NI-fECG) processing. Often, these methods are combined with other methods, such adaptive algorithms. However, there are many variants of the ICA methods and it is not clear which one is the most suitable for this task. The goal of this study is to test and objectively evaluate 11 variants of ICA methods combined with an adaptive fast transversal filter (FTF) for the purpose of extracting the NI-fECG. The methods were tested on two datasets, Labour dataset and Pregnancy dataset, which contained real records obtained during clinical practice. The efficiency of the methods was evaluated from the perspective of determining the accuracy of detection of QRS complexes through the parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). The best results were achieved with a combination of FastICA and FTF, which yielded mean values of ACC = 83.72%, SE = 92.13%, PPV = 90.16%, and F1 = 91.14%. Time of calculation was also taken into consideration in the methods. Although FastICA was ranked to be the sixth fastest with its mean computation time of 0.452 s, it had the best ratio of performance and speed. The combination of FastICA and adaptive FTF filter turned out to be very promising. In addition, such device would require signals acquired from the abdominal area only; no need to acquire reference signal from the mother's chest.
- MeSH
- dostupnost zdravotnických služeb MeSH
- lékařské mise MeSH
- lidé MeSH
- monitorování plodu metody MeSH
- osobní vzpomínky jako téma MeSH
- porod etnologie MeSH
- porodnice organizace a řízení MeSH
- porodnictví * metody organizace a řízení statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- eseje MeSH
- Geografické názvy
- Keňa MeSH
This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters of different hybrid systems used for non-invasive fetal electrocardiogram (fECG) extraction. The tested hybrid systems consist of two different blocks, first for maternal component estimation and second, so-called adaptive block, for maternal component suppression by means of an adaptive algorithm (AA). Herein, we tested and optimized four different AAs: Adaptive Linear Neuron (ADALINE), Standard Least Mean Squares (LMS), Sign-Error LMS, Standard Recursive Least Squares (RLS), and Fast Transversal Filter (FTF). The main criterion for optimal parameter selection was the F1 parameter. We conducted experiments using real signals from publicly available databases and those acquired by our own measurements. Our optimization method enabled us to find the corresponding optimal settings for individual adaptive block of all tested hybrid systems which improves achieved results. These improvements in turn could lead to a more accurate fetal heart rate monitoring and detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to find optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing and analysis, opening new diagnostic possibilities of non-invasive fetal electrocardiography.
- MeSH
- algoritmy MeSH
- elektrokardiografie * metody MeSH
- lidé MeSH
- metoda nejmenších čtverců MeSH
- monitorování plodu metody MeSH
- plod fyziologie MeSH
- počítačové zpracování signálu * MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Non-invasive fetal electrocardiography appears to be one of the most promising fetal monitoring techniques during pregnancy and delivery nowadays. This method is based on recording electrical potentials produced by the fetal heart from the surface of the maternal abdomen. Unfortunately, in addition to the useful fetal electrocardiographic signal, there are other interference signals in the abdominal recording that need to be filtered. The biggest challenge in designing filtration methods is the suppression of the maternal electrocardiographic signal. This study focuses on the extraction of fetal electrocardiographic signal from abdominal recordings using a combination of independent component analysis, recursive least squares, and ensemble empirical mode decomposition. The method was tested on two databases, the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations and the PhysioNet Challenge 2013 database. The evaluation was performed by the assessment of the accuracy of fetal QRS complexes detection and the quality of fetal heart rate determination. The effectiveness of the method was measured by means of the statistical parameters as accuracy, sensitivity, positive predictive value, and F1-score. Using the proposed method, when testing on the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database, accuracy higher than 80% was achieved for 11 out of 12 recordings with an average value of accuracy 92.75% [95% confidence interval: 91.19-93.88%], sensitivity 95.09% [95% confidence interval: 93.68-96.03%], positive predictive value 96.36% [95% confidence interval: 95.05-97.17%] and F1-score 95.69% [95% confidence interval: 94.83-96.35%]. When testing on the Physionet Challenge 2013 database, accuracy higher than 80% was achieved for 17 out of 25 recordings with an average value of accuracy 78.24% [95% confidence interval: 73.44-81.85%], sensitivity 81.79% [95% confidence interval: 76.59-85.43%], positive predictive value 87.16% [95% confidence interval: 81.95-90.35%] and F1-score 84.08% [95% confidence interval: 80.75-86.64%]. Moreover, the non-invasive ST segment analysis was carried out on the records from the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database and achieved high accuracy in 7 from in total of 12 records (mean values μ < 0.1 and values of ±1.96σ < 0.1).
- MeSH
- algoritmy * MeSH
- břicho fyziologie MeSH
- databáze faktografické MeSH
- elektrokardiografie metody MeSH
- lidé MeSH
- matky statistika a číselné údaje MeSH
- monitorování plodu metody MeSH
- plod fyziologie MeSH
- počítačové zpracování signálu přístrojové vybavení MeSH
- srdeční frekvence plodu fyziologie MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- fetální srdce abnormality anatomie a histologie chirurgie MeSH
- kardiologie metody normy MeSH
- lidé MeSH
- monitorování plodu metody MeSH
- nemoci srdce MeSH
- plod MeSH
- prenatální diagnóza metody trendy MeSH
- prenatální péče * metody trendy MeSH
- terapie plodu metody trendy MeSH
- ultrasonografie metody MeSH
- vrozené, dědičné a novorozenecké nemoci a abnormality MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
The second Signal Processing and Monitoring in Labor workshop gathered researchers who utilize promising new research strategies and initiatives to tackle the challenges of intrapartum fetal monitoring. The workshop included a series of lectures and discussions focusing on: new algorithms and techniques for cardiotocogoraphy (CTG) and electrocardiogram acquisition and analyses; the results of a CTG evaluation challenge comparing state-of-the-art computerized methods and visual interpretation for the detection of arterial cord pH <7.05 at birth; the lack of consensus about the role of intrapartum acidemia in the etiology of fetal brain injury; the differences between methods for CTG analysis "mimicking" expert clinicians and those derived from "data-driven" analyses; a critical review of the results from two randomized controlled trials testing the former in clinical practice; and relevant insights from modern physiology-based studies. We concluded that the automated algorithms performed comparably to each other and to clinical assessment of the CTG. However, the sensitivity and specificity urgently need to be improved (both computerized and visual assessment). Data-driven CTG evaluation requires further work with large multicenter datasets based on well-defined labor outcomes. And before first tests in the clinic, there are important lessons to be learnt from clinical trials that tested automated algorithms mimicking expert CTG interpretation. In addition, transabdominal fetal electrocardiogram monitoring provides reliable CTG traces and variability estimates; and fetal electrocardiogram waveform analysis is subject to promising new research. There is a clear need for close collaboration between computing and clinical experts. We believe that progress will be possible with multidisciplinary collaborative research.
- MeSH
- acidóza diagnóza MeSH
- algoritmy * MeSH
- elektrokardiografie metody MeSH
- kardiotokografie metody MeSH
- lidé MeSH
- monitorování plodu metody MeSH
- počítačové zpracování signálu MeSH
- prenatální diagnóza MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- kongresy MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Spojené království MeSH
This paper introduces a comprehensive fetal Electrocardiogram (fECG) Signal Extraction and Analysis Virtual Instrument that integrates various methods for detecting the R-R Intervals (RRIs) as a means to determine the fetal Heart Rate (fHR) and therefore facilitates fetal Heart Rate Variability (HRV) signal analysis. Moreover, it offers the capability to perform advanced morphological fECG signal analysis called ST segment Analysis (STAN) as it seamlessly allows the determination of the T-wave to QRS complex ratio (also called T/QRS) in the fECG signal. The integration of these signal processing and analytical modules could help clinical researchers and practitioners to noninvasively monitor and detect the life threatening hypoxic conditions that may arise in different stages of pregnancy and more importantly during delivery and could therefore lead to the reduction of unnecessary C-sections. In our experiments we used real recordings from a Fetal Scalp Electrode (FSE) as well as maternal abdominal electrodes. This Virtual Instrument (Toolbox) not only serves as a desirable platform for comparing various fECG extraction signal processing methods, it also provides an effective means to perform STAN and HRV signal analysis based on proven ECG morphological as well as Autonomic Nervous System (ANS) indices to detect hypoxic conditions.
- MeSH
- elektrokardiografie metody MeSH
- hypoxie diagnóza patofyziologie MeSH
- lidé MeSH
- monitorování plodu metody MeSH
- plod fyziologie MeSH
- počítačové zpracování signálu MeSH
- srdeční frekvence plodu fyziologie MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- adherence a compliance při léčbě MeSH
- chronická renální insuficience * komplikace MeSH
- diabetické nefropatie MeSH
- dialýza ledvin metody MeSH
- hypertenze MeSH
- infekce močového ústrojí farmakoterapie komplikace MeSH
- komplikace těhotenství * MeSH
- lidé MeSH
- monitorování plodu metody MeSH
- preeklampsie MeSH
- proteinurie MeSH
- systémová vaskulitida komplikace prevence a kontrola MeSH
- systémový lupus erythematodes farmakoterapie komplikace prevence a kontrola MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- přehledy MeSH