• Je něco špatně v tomto záznamu ?

Optimization of adaptive filter control parameters for non-invasive fetal electrocardiogram extraction

R. Kahankova, M. Mikolasova, R. Martinek

. 2022 ; 17 (4) : e0266807. [pub] 20220411

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22018820

This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters of different hybrid systems used for non-invasive fetal electrocardiogram (fECG) extraction. The tested hybrid systems consist of two different blocks, first for maternal component estimation and second, so-called adaptive block, for maternal component suppression by means of an adaptive algorithm (AA). Herein, we tested and optimized four different AAs: Adaptive Linear Neuron (ADALINE), Standard Least Mean Squares (LMS), Sign-Error LMS, Standard Recursive Least Squares (RLS), and Fast Transversal Filter (FTF). The main criterion for optimal parameter selection was the F1 parameter. We conducted experiments using real signals from publicly available databases and those acquired by our own measurements. Our optimization method enabled us to find the corresponding optimal settings for individual adaptive block of all tested hybrid systems which improves achieved results. These improvements in turn could lead to a more accurate fetal heart rate monitoring and detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to find optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing and analysis, opening new diagnostic possibilities of non-invasive fetal electrocardiography.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22018820
003      
CZ-PrNML
005      
20220804135122.0
007      
ta
008      
220720s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0266807 $2 doi
035    __
$a (PubMed)35404946
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kahankova, Radana $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic $1 https://orcid.org/0000000315559889
245    10
$a Optimization of adaptive filter control parameters for non-invasive fetal electrocardiogram extraction / $c R. Kahankova, M. Mikolasova, R. Martinek
520    9_
$a This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters of different hybrid systems used for non-invasive fetal electrocardiogram (fECG) extraction. The tested hybrid systems consist of two different blocks, first for maternal component estimation and second, so-called adaptive block, for maternal component suppression by means of an adaptive algorithm (AA). Herein, we tested and optimized four different AAs: Adaptive Linear Neuron (ADALINE), Standard Least Mean Squares (LMS), Sign-Error LMS, Standard Recursive Least Squares (RLS), and Fast Transversal Filter (FTF). The main criterion for optimal parameter selection was the F1 parameter. We conducted experiments using real signals from publicly available databases and those acquired by our own measurements. Our optimization method enabled us to find the corresponding optimal settings for individual adaptive block of all tested hybrid systems which improves achieved results. These improvements in turn could lead to a more accurate fetal heart rate monitoring and detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to find optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing and analysis, opening new diagnostic possibilities of non-invasive fetal electrocardiography.
650    _2
$a algoritmy $7 D000465
650    12
$a elektrokardiografie $x metody $7 D004562
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a monitorování plodu $x metody $7 D005323
650    _2
$a plod $x fyziologie $7 D005333
650    _2
$a lidé $7 D006801
650    _2
$a metoda nejmenších čtverců $7 D016018
650    _2
$a těhotenství $7 D011247
650    12
$a počítačové zpracování signálu $7 D012815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mikolasova, Martina $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
700    1_
$a Martinek, Radek $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 17, č. 4 (2022), s. e0266807
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35404946 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135115 $b ABA008
999    __
$a ok $b bmc $g 1822426 $s 1170063
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 17 $c 4 $d e0266807 $e 20220411 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...