• Je něco špatně v tomto záznamu ?

A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction

K. Barnova, R. Martinek, R. Jaros, R. Kahankova, A. Matonia, M. Jezewski, R. Czabanski, K. Horoba, J. Jezewski

. 2021 ; 16 (8) : e0256154. [pub] 20210813

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003931

Non-invasive fetal electrocardiography appears to be one of the most promising fetal monitoring techniques during pregnancy and delivery nowadays. This method is based on recording electrical potentials produced by the fetal heart from the surface of the maternal abdomen. Unfortunately, in addition to the useful fetal electrocardiographic signal, there are other interference signals in the abdominal recording that need to be filtered. The biggest challenge in designing filtration methods is the suppression of the maternal electrocardiographic signal. This study focuses on the extraction of fetal electrocardiographic signal from abdominal recordings using a combination of independent component analysis, recursive least squares, and ensemble empirical mode decomposition. The method was tested on two databases, the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations and the PhysioNet Challenge 2013 database. The evaluation was performed by the assessment of the accuracy of fetal QRS complexes detection and the quality of fetal heart rate determination. The effectiveness of the method was measured by means of the statistical parameters as accuracy, sensitivity, positive predictive value, and F1-score. Using the proposed method, when testing on the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database, accuracy higher than 80% was achieved for 11 out of 12 recordings with an average value of accuracy 92.75% [95% confidence interval: 91.19-93.88%], sensitivity 95.09% [95% confidence interval: 93.68-96.03%], positive predictive value 96.36% [95% confidence interval: 95.05-97.17%] and F1-score 95.69% [95% confidence interval: 94.83-96.35%]. When testing on the Physionet Challenge 2013 database, accuracy higher than 80% was achieved for 17 out of 25 recordings with an average value of accuracy 78.24% [95% confidence interval: 73.44-81.85%], sensitivity 81.79% [95% confidence interval: 76.59-85.43%], positive predictive value 87.16% [95% confidence interval: 81.95-90.35%] and F1-score 84.08% [95% confidence interval: 80.75-86.64%]. Moreover, the non-invasive ST segment analysis was carried out on the records from the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database and achieved high accuracy in 7 from in total of 12 records (mean values μ < 0.1 and values of ±1.96σ < 0.1).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003931
003      
CZ-PrNML
005      
20220127145719.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0256154 $2 doi
035    __
$a (PubMed)34388227
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Barnova, Katerina $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
245    12
$a A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction / $c K. Barnova, R. Martinek, R. Jaros, R. Kahankova, A. Matonia, M. Jezewski, R. Czabanski, K. Horoba, J. Jezewski
520    9_
$a Non-invasive fetal electrocardiography appears to be one of the most promising fetal monitoring techniques during pregnancy and delivery nowadays. This method is based on recording electrical potentials produced by the fetal heart from the surface of the maternal abdomen. Unfortunately, in addition to the useful fetal electrocardiographic signal, there are other interference signals in the abdominal recording that need to be filtered. The biggest challenge in designing filtration methods is the suppression of the maternal electrocardiographic signal. This study focuses on the extraction of fetal electrocardiographic signal from abdominal recordings using a combination of independent component analysis, recursive least squares, and ensemble empirical mode decomposition. The method was tested on two databases, the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations and the PhysioNet Challenge 2013 database. The evaluation was performed by the assessment of the accuracy of fetal QRS complexes detection and the quality of fetal heart rate determination. The effectiveness of the method was measured by means of the statistical parameters as accuracy, sensitivity, positive predictive value, and F1-score. Using the proposed method, when testing on the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database, accuracy higher than 80% was achieved for 11 out of 12 recordings with an average value of accuracy 92.75% [95% confidence interval: 91.19-93.88%], sensitivity 95.09% [95% confidence interval: 93.68-96.03%], positive predictive value 96.36% [95% confidence interval: 95.05-97.17%] and F1-score 95.69% [95% confidence interval: 94.83-96.35%]. When testing on the Physionet Challenge 2013 database, accuracy higher than 80% was achieved for 17 out of 25 recordings with an average value of accuracy 78.24% [95% confidence interval: 73.44-81.85%], sensitivity 81.79% [95% confidence interval: 76.59-85.43%], positive predictive value 87.16% [95% confidence interval: 81.95-90.35%] and F1-score 84.08% [95% confidence interval: 80.75-86.64%]. Moreover, the non-invasive ST segment analysis was carried out on the records from the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database and achieved high accuracy in 7 from in total of 12 records (mean values μ < 0.1 and values of ±1.96σ < 0.1).
650    _2
$a břicho $x fyziologie $7 D000005
650    12
$a algoritmy $7 D000465
650    _2
$a databáze faktografické $7 D016208
650    _2
$a elektrokardiografie $x metody $7 D004562
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a monitorování plodu $x metody $7 D005323
650    _2
$a plod $x fyziologie $7 D005333
650    _2
$a srdeční frekvence plodu $x fyziologie $7 D006340
650    _2
$a lidé $7 D006801
650    _2
$a matky $x statistika a číselné údaje $7 D009035
650    _2
$a těhotenství $7 D011247
650    _2
$a počítačové zpracování signálu $x přístrojové vybavení $7 D012815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Martinek, Radek $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
700    1_
$a Jaros, Rene $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
700    1_
$a Kahankova, Radana $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
700    1_
$a Matonia, Adam $u Łukasiewicz Research Network -Institute of Medical Technology and Equipment, Zabrze, Poland
700    1_
$a Jezewski, Michal $u Department of Cybernetics, Nanotechnology and Data Processing, Silesian University of Technology, Gliwice, Poland
700    1_
$a Czabanski, Robert $u Department of Cybernetics, Nanotechnology and Data Processing, Silesian University of Technology, Gliwice, Poland
700    1_
$a Horoba, Krzysztof $u Łukasiewicz Research Network -Institute of Medical Technology and Equipment, Zabrze, Poland
700    1_
$a Jezewski, Janusz $u Łukasiewicz Research Network -Institute of Medical Technology and Equipment, Zabrze, Poland
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 16, č. 8 (2021), s. e0256154
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34388227 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145715 $b ABA008
999    __
$a ok $b bmc $g 1751406 $s 1155080
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 16 $c 8 $d e0256154 $e 20210813 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...