• Je něco špatně v tomto záznamu ?

A novel modular fetal ECG STAN and HRV analysis: Towards robust hypoxia detection

R. Martinek, R. Kahankova, B. Martin, J. Nedoma, M. Fajkus,

. 2019 ; 27 (3) : 257-287. [pub] -

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19045083

This paper introduces a comprehensive fetal Electrocardiogram (fECG) Signal Extraction and Analysis Virtual Instrument that integrates various methods for detecting the R-R Intervals (RRIs) as a means to determine the fetal Heart Rate (fHR) and therefore facilitates fetal Heart Rate Variability (HRV) signal analysis. Moreover, it offers the capability to perform advanced morphological fECG signal analysis called ST segment Analysis (STAN) as it seamlessly allows the determination of the T-wave to QRS complex ratio (also called T/QRS) in the fECG signal. The integration of these signal processing and analytical modules could help clinical researchers and practitioners to noninvasively monitor and detect the life threatening hypoxic conditions that may arise in different stages of pregnancy and more importantly during delivery and could therefore lead to the reduction of unnecessary C-sections. In our experiments we used real recordings from a Fetal Scalp Electrode (FSE) as well as maternal abdominal electrodes. This Virtual Instrument (Toolbox) not only serves as a desirable platform for comparing various fECG extraction signal processing methods, it also provides an effective means to perform STAN and HRV signal analysis based on proven ECG morphological as well as Autonomic Nervous System (ANS) indices to detect hypoxic conditions.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045083
003      
CZ-PrNML
005      
20200120083459.0
007      
ta
008      
200109s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.3233/THC-181375 $2 doi
035    __
$a (PubMed)30562910
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Martinek, Radek $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, Ostrava 70833, Czech Republic.
245    12
$a A novel modular fetal ECG STAN and HRV analysis: Towards robust hypoxia detection / $c R. Martinek, R. Kahankova, B. Martin, J. Nedoma, M. Fajkus,
520    9_
$a This paper introduces a comprehensive fetal Electrocardiogram (fECG) Signal Extraction and Analysis Virtual Instrument that integrates various methods for detecting the R-R Intervals (RRIs) as a means to determine the fetal Heart Rate (fHR) and therefore facilitates fetal Heart Rate Variability (HRV) signal analysis. Moreover, it offers the capability to perform advanced morphological fECG signal analysis called ST segment Analysis (STAN) as it seamlessly allows the determination of the T-wave to QRS complex ratio (also called T/QRS) in the fECG signal. The integration of these signal processing and analytical modules could help clinical researchers and practitioners to noninvasively monitor and detect the life threatening hypoxic conditions that may arise in different stages of pregnancy and more importantly during delivery and could therefore lead to the reduction of unnecessary C-sections. In our experiments we used real recordings from a Fetal Scalp Electrode (FSE) as well as maternal abdominal electrodes. This Virtual Instrument (Toolbox) not only serves as a desirable platform for comparing various fECG extraction signal processing methods, it also provides an effective means to perform STAN and HRV signal analysis based on proven ECG morphological as well as Autonomic Nervous System (ANS) indices to detect hypoxic conditions.
650    _2
$a elektrokardiografie $x metody $7 D004562
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a monitorování plodu $x metody $7 D005323
650    _2
$a plod $x fyziologie $7 D005333
650    _2
$a srdeční frekvence plodu $x fyziologie $7 D006340
650    _2
$a lidé $7 D006801
650    _2
$a hypoxie $x diagnóza $x patofyziologie $7 D000860
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a těhotenství $7 D011247
650    _2
$a počítačové zpracování signálu $7 D012815
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kahankova, Radana $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, Ostrava 70833, Czech Republic.
700    1_
$a Martin, Boris $u Polytech Grenoble, Saint-Martin-d'Hres 38400, France.
700    1_
$a Nedoma, Jan $u Department of Telecommunications, VSB-Technical University of Ostrava, Ostrava 70833, Czech Republic.
700    1_
$a Fajkus, Marcel $u Department of Telecommunications, VSB-Technical University of Ostrava, Ostrava 70833, Czech Republic.
773    0_
$w MED00007376 $t Technology and health care : official journal of the European Society for Engineering and Medicine $x 1878-7401 $g Roč. 27, č. 3 (2019), s. 257-287
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30562910 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200120083835 $b ABA008
999    __
$a ok $b bmc $g 1483352 $s 1083756
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 27 $c 3 $d 257-287 $e - $i 1878-7401 $m Technology anad health care $n Technol Health Care $x MED00007376
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...