Template subtraction based methods for non-invasive fetal electrocardiography extraction
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2023/042
Ministry of Education of the Czechia
CZ.10.03.01/00/22_/0000048
REFRESH-Research Excellence For REgion Sustainability and High-tech Industries project
PubMed
38182757
PubMed Central
PMC10770155
DOI
10.1038/s41598-024-51213-5
PII: 10.1038/s41598-024-51213-5
Knihovny.cz E-zdroje
- MeSH
- elektrokardiografie MeSH
- lidé MeSH
- monitorování plodu MeSH
- plod * MeSH
- prenatální péče * MeSH
- srdeční frekvence plodu MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Assessment of fetal heart rate (fHR) through non-invasive fetal electrocardiogram (fECG) is challenging task. This study compares the performance of five template subtraction (TS) methods on Labor (12 5-min recordings) and Pregnancy datasets (10 20-min recordings). The methods include TS without adaptation, TS using singular value decomposition (TS[Formula: see text]), TS using linear prediction (TS[Formula: see text]), TS using scaling factor (TS[Formula: see text]), and sequential analysis (SA). The influence of the chosen maternal wavelet for the continuous wavelet transform (CWT) detector is also compared. The F1 score was used to measure performance. Each recording in both datasets consisted of four signals, resulting in a total comparison of 88 signals for the TS-based methods. The study reported the following results: F1 = 95.71% with TS, F1 = 95.93% with TS[Formula: see text], F1 = 95.30% with TS[Formula: see text], F1 = 95.82% with TS[Formula: see text], and F1 = 95.99% with SA. The study identified gaus3 as the suitable maternal wavelet for fetal R-peak detection using the CWT detector. Furthermore, the study classified signals from the tested datasets into categories of high, medium, and low quality, providing valuable insights for subsequent fECG signal extraction. This research contributes to advancing the understanding of non-invasive fECG signal processing and lays the groundwork for improving fetal monitoring in clinical settings.
Zobrazit více v PubMed
Zhang Y, Yu S. Single-lead noninvasive fetal ECG extraction by means of combining clustering and principal components analysis. Med. Biol. Eng. Comput. 2020;58:419–432. doi: 10.1007/s11517-019-02087-7. PubMed DOI
Souriau R, Fontecave-Jallon J, Rivet B. Fetal heart rate monitoring by fusion of estimations from two modalities: A modified Viterbi’s algorithm. Biomed. Signal Process. Control. 2023;80:104405. doi: 10.1016/j.bspc.2022.104405. DOI
Abel Jaba Deva, K., Dhanalakshmi, S. & Kumar, R. A comprehensive survey on signal processing and machine learning techniques for non-invasive fetal ECG extraction. Multimed. Tools Appl. 82, 1373–1400. 10.1007/s11042-022-13391-0 (2023).
Zhang Y, et al. Wearable fetal ECG monitoring system from abdominal electrocardiography recording. Biosensors. 2022;12:475. doi: 10.3390/bios12070475. PubMed DOI PMC
Behar JA, et al. Noninvasive fetal electrocardiography for the detection of fetal arrhythmias. Prenat. Diagn. 2019;39:178–187. doi: 10.1002/pd.5412. PubMed DOI
Bhaskaran, A., George, S. & Arora, M. Heart rate estimation and validation algorithm for fetal phonocardiography. Physiol. Meas.43, 075008. 10.1088/1361-6579/ac7a8c (2022). PubMed
Tomassini S, et al. Wavelet filtering of fetal phonocardiography: A comparative analysis. Math. Biosci. Eng. 2019;16:6034–6046. doi: 10.3934/mbe.2019302. PubMed DOI
Ghosh, S. K., Ray, A., Tripathy, R. K. & N, P. R. A transform domain approach for the compression of fetal phonocardiogram signal. IEEE Sensors Lett.5, 1–4. 10.1109/LSENS.2021.3074985 (2021).
Escalona-Vargas D, Bolin EH, Lowery CL, Siegel ER, Eswaran H. Recording and quantifying fetal magnetocardiography signals using a flexible array of optically-pumped magnetometers. Physiol. Meas. 2020;41:125003. doi: 10.1088/1361-6579/abc353. PubMed DOI PMC
Strand S, et al. Low-cost fetal magnetocardiography: A comparison of superconducting quantum interference device and optically pumped magnetometers. J. Am. Heart Assoc. 2019;8:e013436. doi: 10.1161/JAHA.119.013436. PubMed DOI PMC
Wacker-Gussmann A, Strasburger JF, Wakai RT. Contribution of fetal magnetocardiography to diagnosis, risk assessment, and treatment of fetal arrhythmia. J. Am. Heart Assoc. 2022;11:e025224. doi: 10.1161/JAHA.121.025224. PubMed DOI PMC
Souriau, R., Fontecave-Jallon, J. & Rivet, B. Fetal ECG denoising using dynamic time warping template subtraction. In 2022 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4978–4981, 10.1109/EMBC48229.2022.9871318 (IEEE, Glasgow, Scotland, United Kingdom, 2022). PubMed
GE HealthCare. https://www.gehealthcare.com/ (2023).
Mindchild. http://www.mindchild.com/ (2023).
Nemo healthcare. https://nemohealthcare.com/ (2023).
Mohammed Kaleem, A. & Kokate, R. D. A survey on FECG extraction using neural network and adaptive filter. Soft Comput.25, 4379–4392. 10.1007/s00500-020-05447-w (2021).
Sarafan S, et al. Investigation of methods to extract fetal electrocardiogram from the mother’s abdominal signal in practical scenarios. Technologies. 2020;8:33. doi: 10.3390/technologies8020033. PubMed DOI PMC
Wang L, Zhao C, Dong M, Ota K. Fetal ECG signal extraction from long-term abdominal recordings based on adaptive QRS removal and joint blind source separation. IEEE Sens. J. 2022;22:20718–20729. doi: 10.1109/JSEN.2022.3206225. DOI
Zhong W, Zhao W. Fetal ECG extraction using short time Fourier transform and generative adversarial networks. Physiol. Meas. 2021;42:105011. doi: 10.1088/1361-6579/ac2c5b. PubMed DOI
Chen J, Cao F, Gao P. A fetal ECG extraction method based on ELM optimized by improved PSO algorithm. Crit. Rev. Biomed. Eng. 2022;50:35–47. doi: 10.1615/CritRevBiomedEng.2022044778. PubMed DOI
Kurtadikar, V. S. & Pande, H. M. Fetal ECG Extraction: Principal Component Analysis Method for Extraction of Fetal ECG. In Banubakode, A. N., Bhutkar, G. D., Kurniawan, Y. & Gosavi, C. S. (eds.) Advances in systems analysis, software engineering, and high performance computing, 275–294. 10.4018/978-1-7998-9121-5.ch013 (IGI Global, 2022).
Mohebbian MR, et al. Fetal ECG Extraction From Maternal ECG Using Attention-Based CycleGAN. IEEE J. Biomed. Health Inf. 2022;26:515–526. doi: 10.1109/JBHI.2021.3111873. PubMed DOI
Hao J, Yang Y, Zhou Z, Wu S. Fetal electrocardiogram signal extraction based on fast independent component analysis and singular value decomposition. Sensors. 2022;22:3705. doi: 10.3390/s22103705. PubMed DOI PMC
Li T. Fetal electrocardiography extraction based on improved fast independent components analysis algorithm. Crit. Rev. Biomed. Eng. 2021;49:53–64. doi: 10.1615/CritRevBiomedEng.2022042126. PubMed DOI
Mirza, S., Bhole, K. & Singh, P. Fetal ECG Extraction and QRS Detection using Independent Component Analysis. In 2020 16th IEEE International Colloquium on Signal Processing and Its Applications (CSPA), 157–161, 10.1109/CSPA48992.2020.9068696 (IEEE, Langkawi, Malaysia, 2020).
Xuan, Y. et al. A New Approach to Extract Fetal Electrocardiogram Using Affine Combination of Adaptive Filters. In ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5, 10.1109/ICASSP49357.2023.10095885 (IEEE, Rhodes Island, Greece, 2023).
Krupa AJD, Samiappan D, Kumar R, Kumar SP. Multiple sub-filter adaptive noise canceller for fetal ECG extraction. Proc. Comput. Sci. 2019;165:182–188. doi: 10.1016/j.procs.2020.01.093. DOI
Krupa, A. J. D., Dhanalakshmi, S. & R, K. An improved parallel sub-filter adaptive noise canceler for the extraction of fetal ECG. Biomed. Eng.66, 503–514. 10.1515/bmt-2020-0313 (2021). PubMed
Kanjilal, P., Palit, S. & Saha, G. Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Trans. Biomed. Eng.44, 51–59. 10.1109/10.553712 (1997). PubMed
Vullings R, et al. Dynamic segmentation and linear prediction for maternal ECG removal in antenatal abdominal recordings. Physiol. Meas. 2009;30:291–307. doi: 10.1088/0967-3334/30/3/005. PubMed DOI
Cerutti S, et al. Variability analysis of fetal heart rate signals as obtained from abdominal electrocardiographic recordings. J. Perinat. Med. 1986;14:445–452. doi: 10.1515/jpme.1986.14.6.445. PubMed DOI
Martens SMM, Rabotti C, Mischi M, Sluijter RJ. A robust fetal ECG detection method for abdominal recordings. Physiol. Meas. 2007;28:373–388. doi: 10.1088/0967-3334/28/4/004. PubMed DOI
Andreotti F, Behar J, Zaunseder S, Oster J, Clifford GD. An open-source framework for stress-testing non-invasive foetal ECG extraction algorithms. Physiol. Meas. 2016;37:627–648. doi: 10.1088/0967-3334/37/5/627. PubMed DOI
Behar J, Andreotti F, Zaunseder S, Oster J, Clifford GD. A practical guide to non-invasive foetal electrocardiogram extraction and analysis. Physiol. Meas. 2016;37:R1–R35. doi: 10.1088/0967-3334/37/5/R1. PubMed DOI
Liu H, Chen D, Sun G. Detection of fetal ECG R wave from single-lead abdominal ecg using a combination of RR time-series smoothing and template-matching approach. IEEE Access. 2019;7:66633–66643. doi: 10.1109/ACCESS.2019.2917826. DOI
Zhang, Y., Gu, A., Yang, C., Li, J. & Liu, C. An approach for fetal QRS complex detection from abdominal ECG recordings. In 2021 International Conference on Sensing, Measurement and Data Analytics in the Era of Artificial Intelligence (ICSMD), 1–5. 10.1109/ICSMD53520.2021.9670845 (IEEE, Nanjing, China, 2021).
Gurve D, Krishnan S. Separation of fetal-ECG from single-channel abdominal ECG using activation scaled non-negative matrix factorization. IEEE J. Biomed. Health Inform. 2020;24:669–680. doi: 10.1109/JBHI.2019.2920356. PubMed DOI
Krupa AJD, et al. Fetal heart rate estimation using fractional Fourier transform and wavelet analysis. Biocybern. Biomed. Eng. 2021;41:1533–1547. doi: 10.1016/j.bbe.2021.09.006. DOI
Krupa AJD, Dhanalakshmi S, Kumar R. Joint time-frequency analysis and non-linear estimation for fetal ECG extraction. Biomed. Signal Process. Control. 2022;75:103569. doi: 10.1016/j.bspc.2022.103569. DOI
Wang T, et al. Automatic ECG classification using continuous wavelet transform and convolutional neural network. Entropy. 2021;23:119. doi: 10.3390/e23010119. PubMed DOI PMC
Azizi T. Measuring fractal dynamics of FECG signals to determine the complexity of fetal heart rate. Chaos Solitons Fract. X. 2022;9:100083. doi: 10.1016/j.csfx.2022.100083. DOI
Matonia, A. et al. Fetal electrocardiograms, direct and abdominal with reference heart beats annotations. 10.6084/M9.FIGSHARE.C.4740794.V1 (2020). PubMed PMC
Wrobel, J. et al. Fetal electrocardiograms, direct and abdominal with reference heart beats annotations. 10.6084/M9.FIGSHARE.10311029.V1 (2020). PubMed PMC
Yuan L, Zhou Z, Yuan Y, Wu S. An improved FastICA method for fetal ECG extraction. Comput. Math. Methods Med. 2018;1–7:2018. doi: 10.1155/2018/7061456. PubMed DOI PMC
Al-Sheikh B, Salman MS, Eleyan A, Alboon S. Non-invasive fetal ECG extraction using discrete wavelet transform recursive inverse adaptive algorithm. Technol. Health Care. 2020;28:507–520. doi: 10.3233/THC-191948. PubMed DOI
Billeci L, Varanini M. A combined independent source separation and quality index optimization method for fetal ECG extraction from abdominal maternal leads. Sensors. 2017;17:1135. doi: 10.3390/s17051135. PubMed DOI PMC
Ghobadi Azbari, P. et al. A novel approach to the extraction of fetal electrocardiogram based on empirical mode decomposition and correlation analysis. Austral. Phys. Eng. Sci. Med.40, 565–574. 10.1007/s13246-017-0560-4 (2017). PubMed
Sameni. A review of fetal ECG signal processing issues and promising directions. Open Pacing Electrophysiol. Ther. J.10.2174/1876536X01003010004 (2010). PubMed PMC
Yu Q, et al. Automatic identifying of maternal ECG source when applying ICA in fetal ECG extraction. Biocybern. Biomed. Eng. 2018;38:448–455. doi: 10.1016/j.bbe.2018.03.003. DOI
Matonia A, et al. Fetal electrocardiograms, direct and abdominal with reference heartbeat annotations. Sci. Data. 2020;7:200. doi: 10.1038/s41597-020-0538-z. PubMed DOI PMC
Team, S. D. C. Metadata record for: Fetal electrocardiograms, direct and abdominal with reference heartbeats annotations. 10.6084/M9.FIGSHARE.12280007 (2020). PubMed PMC
Li, C., Zheng, C., & Tai, C. Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng.42, 21–28. 10.1109/10.362922 (1995). PubMed
Du P, Kibbe WA, Lin SM. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics. 2006;22:2059–2065. doi: 10.1093/bioinformatics/btl355. PubMed DOI
Ghaffari A, Golbayani H, Ghasemi M. A new mathematical based QRS detector using continuous wavelet transform. Comput. Electr. Eng. 2008;34:81–91. doi: 10.1016/j.compeleceng.2007.10.005. DOI
Brioua, A., Benzid, R. & Saidi, L. Efficient wavelet thresholding and wiener filtering association incorporating a median filter smoother followed by R-peaks recovery for ECG denoising. Traitement du Signal40, 1211–1217. 10.18280/ts.400338 (2023).
Kahankova R, Mikolasova M, Martinek R. Optimization of adaptive filter control parameters for non-invasive fetal electrocardiogram extraction. PLoS ONE. 2022;17:e0266807. doi: 10.1371/journal.pone.0266807. PubMed DOI PMC
Baldazzi G, et al. Automatic signal quality assessment of raw trans-abdominal biopotential recordings for non-invasive fetal electrocardiography. Front. Bioeng. Biotechnol. 2023;11:1059119. doi: 10.3389/fbioe.2023.1059119. PubMed DOI PMC