Physical Mapping of Bread Wheat Chromosome 5A: An Integrated Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
D.M. 7398/7303/08
the Italian Ministry of Agriculture, Project "Mappa fisica del cromosoma 5A dei frumenti"
P501/12/G090
the Czech Science Foundation
LO1204
the Ministry of Education, Youth and Sports of the Czech Republic
- Publikační typ
- časopisecké články MeSH
The huge size, redundancy, and highly repetitive nature of the bread wheat [Triticum aestivum (L.)] genome, makes it among the most difficult species to be sequenced. To overcome these limitations, a strategy based on the separation of individual chromosomes or chromosome arms and the subsequent production of physical maps was established within the frame of the International Wheat Genome Sequence Consortium (IWGSC). A total of 95,812 bacterial artificial chromosome (BAC) clones of short-arm chromosome 5A (5AS) and long-arm chromosome 5A (5AL) arm-specific BAC libraries were fingerprinted and assembled into contigs by complementary analytical approaches based on the FingerPrinted Contig (FPC) and Linear Topological Contig (LTC) tools. Combined anchoring approaches based on polymerase chain reaction (PCR) marker screening, microarray, and sequence homology searches applied to several genomic tools (i.e., genetic maps, deletion bin map, neighbor maps, BAC end sequences (BESs), genome zipper, and chromosome survey sequences) allowed the development of a high-quality physical map with an anchored physical coverage of 75% for 5AS and 53% for 5AL with high portions (64 and 48%, respectively) of contigs ordered along the chromosome. In the genome of grasses, Brachypodium [Brachypodium distachyon (L.) Beauv.], rice (Oryza sativa L.), and sorghum [Sorghum bicolor (L.) Moench] homologs of genes on wheat chromosome 5A were separated into syntenic blocks on different chromosomes as a result of translocations and inversions during evolution. The physical map presented represents an essential resource for fine genetic mapping and map-based cloning of agronomically relevant traits and a reference for the 5A sequencing projects.
Council for Agricultural Research and Economics Cereal Research Centre Foggia 1 71122
Council for Agricultural Research and Economics Rice Research Unit Vercelli 1 13100
CRIBI Biotechnology Center Univ of Padova Padova 1 35121
Dep of Biotechnology Univ of Verona Verona 1 37129
Dep of Life Sciences Univ of Modena and Reggio Emilia Reggio Emilia 1 42100
Dep of Soil Plant and Food Sciences Section of Genetic and Plant Breeding Univ of Bari Bari 1 70126
Zobrazit více v PubMed
Allen, A.M., Gary Barker, L.A., Wilkinson, P., Burridge, A., Winfield, M., Uauy, C. et al. 2012. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol. J. 11:279-295. doi: 10.1111/pbi.12009http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000316825400002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Alnemer, L.M., Seetan, R.I., Bassi, F.M., Chitraranjan, C., Helsene, A., Loree, P. et al. 2013. Wheat Zapper: A flexible online tool for colinearity studies in grass genomes. Funct. Integr. Genomics 13:11-17. doi: 10.1007/s10142-013-0317-4http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000316690000002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Appels, R., Akhunov, E., Alaux, M., Caccamo, M., Cattonaro, F., Dolezel, J. et al. 2010. IWGSC: Physical mapping standard protocols workshop. AWN 56:5-9.
Ariyadasa, R., Mascher, M., Nussbaumer, T., Schulte, D., Frenkel, Z., Poursarebani, N. et al. 2014. A sequence-ready physical map of barley anchored genetically by two million single-nucleotide polymorphisms. Plant Physiol. 164:412-423. doi: 10.1104/pp.113.228213http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000329447400032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Ariyadasa, R., Stein, N.. 2012. Advances in BAC-based physical mapping and map integration strategies in plants. J. Biomed. Biotechnol. 2012:184854. doi: 10.1155/2012/184854
Barabaschi, D., Guerra, D., Lacrima, K., Laino, P., Michelotti, V., Urso, S. et al. 2012. Emerging knowledge from genome sequencing of crop species. Mol. Biotechnol. 50:250-266. doi: 10.1007/s12033-011-9443-1http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000299920900009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Bolger, M.E., Weisshaar, B., Scholz, U., Stein, N., Usadel, B., Mayer, K.F.X.. 2014. Plant genome sequencing- Applications for crop improvement. Curr. Opin. Biotechnol. 26:31-37. doi: 10.1016/j.copbio.2013.08.019http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000335111500008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Boutin-Ganache, I., Raposo, M., Raymond, M., Deschepper, C.F.. 2001. M13-tailed primers improve the readability and usability of microsatellite analyzes performed with two different allele-sizing methods. Biotechniques 31:24-28.
Breen, J., Wicker, T., Shatalina, M., Frenkel, Z., Bertin, I., Philippe, R. et al. 2013. A physical map of the short arm of wheat chromosome 1A. PLoS ONE 8:e80272. doi: 10.1371/journal.pone.0080272
Buerstmayr, H., Steiner, B., Hartl, L., Griesser, M., Angerer, N., Lengauer, D. et al. 2003. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor. Appl. Genet. 107:503-508. doi: 10.1007/s00122-003-1272-6
Cenci, A., Somma, S., Chantret, N., Dubcovsky, J., Blanco, A.. 2004. PCR identification of durum wheat BAC clones containing genes for carotenoid biosynthetic pathway and their chromosome localization. Genome 47:911-917. doi: 10.1139/g04-033
Choulet, F., Alberti, A., Theil, S., Glover, N., Barbe, V., Daron, J. et al. 2014. Structural and functional partitioning of bread wheat chromosome 3B. Science 345:6194. doi: 10.1126/science.1249721
Cone, K.C., McMullen, M.D., Vroh Bi, I., Davis, G.L., Yim, Y.S., Gardiner, J.M. et al. 2002. Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol. 130:1598-1605. doi: 10.1104/pp.012245
Daniluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B., Sarhan, F.. 2003. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132:1849-1860. doi: 10.1104/pp.103.023523
Dean, F.B., Nelson, J.R., Giesler, T.L., Lasken, R.S.. 2001. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11:1095-1099. doi: 10.1101/gr.180501
Desiderio, F., Guerra, D., Rubiales, D., Piarulli, L., Pasquini, M., Mastrangelo, A.M. et al. 2014. Identification and mapping of quantitative trait loci for leaf rust resistance derived from a tetraplod wheat T. dicoccum accession. Mol. Breed. 34:1659-1675. doi: 10.1007/s11032-014-0186-0http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000345970200010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Diéguez, M.J., Pergolesi, M.F., Velasquez, S.M., Ingala, L., López, M., Darino, M. et al. 2014. Fine mapping of LrSV2, a race-specific adult plant leaf rust resistance gene on wheat chromosome 3BS. Theor. Appl. Genet. 127:1133-1141. doi: 10.1007/s00122-014-2285-zhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000336754700010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Doležel, J., Kubaláková, M., Paux, E., Bartoš, J., Feuillet, C.. 2007. Chromosome-based genomics in the cereals. Chromosome Res. 15:51-66. doi: 10.1007/s10577-006-1106-xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000244191500005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Doležel, J., Vrána, J., Šafář, J., Bartoš, J., Kubaláková, M., Šimková, H. 2012. Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genomics 12:397-416. doi: 10.1007/s10142-012-0293-0http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000308238900001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Egan, A.N., Schlueter, J., Spooner, D.M.. 2012. Applications of next-generation sequencing in plant biology. Am. J. Bot. 99:175-185. doi: 10.3732/ajb.1200020http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000300471100001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Endo, T.R., Gill, B.S.. 1996. The deletion stocks of common wheat. J. Hered. 87:295-307. doi: 10.1093/oxfordjournals.jhered.a023003
Faraut, T., de Givry, S., Hitte, C., Lahbib-Mansais, Y., Morisson, M., Milan, D. et al. 2009. Contribution of radiation hybrids to genome mapping in domestic animals. Cytogenet. Genome Res. 126:21-33. doi: 10.1159/000245904http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000272605100004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Feuillet, C., Eversole, K.. 2007. Physical mapping of the wheat genome: A coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr. J. Plant Sci. 55:307-313. doi: 10.1560/IJPS.55.3-4.307http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000261664500013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Feuillet, C., Leach, J.E., Rogers, J., Schnable, P.S., Eversole, K.. 2011. Crop genome sequencing: Lessons and rationales. Trends Plant Sci. 16:77-88. doi: 10.1016/j.tplants.2010.10.005http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000288342200003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Frenkel, Z., Paux, E., Mester, D., Feuillet, C., Korol, A.. 2010. LTC: A novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes. BMC Bioinf. 11:584. doi: 10.1186/1471-2105-11-584
Gadaleta, A., Giancaspro, A., Giove, S.L., Zacheo, S., Incerti, O., Simeone, R. et al. 2012. Development of a deletion and genetic linkage map for the 5A and 5B chromosomes of wheat (Triticum aestivum). Genome 55:417-427. doi: 10.1139/g2012-028http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000305294800002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Gadaleta, A., Nigro, D., Giove, S.L., Incerti, O., Simeone, R., Piarulli, L. et al. 2014. A new genetic and deletion map of wheat chromosome 5A to detect candidate genes for quantitative traits. Mol. Breed. 34:1599-1611. doi: 10.1007/s11032-014-0185-1http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000345970200006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Gottlieb, A., Muller, H.G., Massa, A.N., Wanjugi, H., Deal, K.R., You, F.M. et al. 2013. Insular organization of gene space in grass genomes. PLoS ONE 8:e54101. doi: 10.1371/journal.pone.0054101
Haudry, A., Cenci, A., Ravel, C., Bataillon, T., Brunel, D., Poncet, C. et al. 2007. Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 24:1506-1517. doi: 10.1093/molbev/msm077http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000247943100008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Hernandez, P., Martis, M., Dorado, G., Pfeifer, M., Galvez, S., Schaaf, S. et al. 2012. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 69:377-386. doi: 10.1111/j.1365-313X.2011.04808.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000299553100001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
International Brachypodium Initiative (IBI). 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763-768. doi: 10.1038/nature08747http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000274394300030&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
International Wheat Genome Sequencing Consortium (IWGSC). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. doi: 10.1126/science.1251788
Janda, J., Šafář, J., Kubaláková, M., Bartoš, J., Kovářová, P., Suchánková, P. et al. 2006. Advanced resources for plant genomics: BAC library specific for the short arm of wheat chromosome 1B. Plant J. 47:977-986. doi: 10.1111/j.1365-313X.2006.02840.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000240147100014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Kalavacharla, V., Hossain, K., Gu, Y., Riera-Lizarazu, O., Vales, M.I., Bhamidimarri, S. et al. 2006. High-resolution radiation hybrid map of wheat chromosome 1D. Genetics 173:1089-1099. doi: 10.1534/genetics.106.056481http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000238650900048&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Kumar, A., Simons, K., Iqbal, M.J., Michalak de Jiménez, M., Bassi, F.M., Ghavami, F. et al. 2012. Physical mapping resources for large plant genomes: Radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics 13:597. doi: 10.1186/1471-2164-13-597
Lazo, G.R., Chao, S., Hummel, D.D., Edwards, H., Crossman, C.C., Lui, N. et al. 2004. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.): EST generation, UniGene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map. Genetics 168:585-593. doi: 10.1534/genetics.104.034777
Liu, H., McNicol, J., Bayer, M., Morris, J.A., Cardle, L., Marshall, D.F. et al. 2011. Highly parallel gene-to-BAC addressing using microarrays. Biotechniques 50:165-174. doi: 10.2144/000113627http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000288639300011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Lucas, S.J., Akpinar, B.A., Kantar, M., Weinstein, Z., Aydinoğlu, F., Šimková, H. et al. 2013. Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A. PLoS ONE 8:e59542. doi: 10.1371/journal.pone.0059542
Lucas, S.J., Šimková, H., Šafář, J., Jurman, I., Cattonaro, F., Vautrin, S. et al. 2012. Functional features of a single chromosome arm in wheat (1AL) determined from its structure. Funct. Integr. Genomics 12:173-182. doi: 10.1007/s10142-011-0250-3http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000301834100014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Luo, M.C., Thomas, C., You, F.M., Hsiao, J., Ouyang, S., Buell, C.R. et al. 2003. High throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378-389. doi: 10.1016/S0888-7543(03)00128-9
Mascher, M., Muehlbauer, G.J., Rokhsar, D.S., Chapman, J., Schmutz, J., Barry, K. et al. 2013. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 76:718-727. doi: 10.1111/tpj.12319http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000326138100016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Mascher, M., Stein, N.. 2014. Genetic anchoring of whole-genome shotgun assemblies. Front. Genet. 5:208. doi: 10.3389/fgene.2014.00208
Massa, A., Morris, C.G.. 2006. Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe Triticeae. J. Mol. Evol. 63:526-536. doi: 10.1007/s00239-005-0292-zhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000241454600010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Mayer, K.F., Martis, M., Hedley, P.E., Simková, H., Liu, H., Morris, J.A. et al. 2011. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249-1263. doi: 10.1105/tpc.110.082537http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000291000500010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Mayer, K.F., Rogers, J., Doležel, J., Pozniak, C., Eversole, K., Feuillet, C. et al. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. doi: 10.1126/science.1251788
Paux, E., Faure, S., Choulet, F., Roger, D., Gauthier, V., Martinant, J.P. et al. 2010. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol. J. 8:196-210. doi: 10.1111/j.1467-7652.2009.00477.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000274199600008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Paux, E., Sourdille, P., Salse, J., Saintenac, C., Choulet, F., Leroy, P. et al. 2008. A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101-104. doi: 10.1126/science.1161847http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000259680200047&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Periyannan, S., Bansal, U., Bariana, H., Deal, K., Luo, M.C., Dvorak, J. et al. 2014. Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor. Appl. Genet. 127:947-955. doi: 10.1007/s00122-014-2270-6http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000333353400015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Philippe, R., Choulet, F., Paux, E., van Oeveren, J., Tang, J., Wittenberg, A.H. et al. 2012. Whole genome profiling provides a robust framework for physical mapping and sequencing in the highly complex and repetitive wheat genome. BMC Genomics 13:47. doi: 10.1186/1471-2164-13-47
Philippe, R., Paux, E., Bertin, I., Sourdille, P., Choulet, F., Laugier, C. et al. 2013. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol. 14:R64. doi: 10.1186/gb-2013-14-6-r64
Poursarebani, N., Nussbaumer, T., Šimková, H., Safář, J., Witsenboer, H., van Oeveren, J. et al. 2014. Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. Plant J. 79:334-347. doi: 10.1111/tpj.12550http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000339439200013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Qi, L.L., Echalier, B., Chao, S., Lazo, G.R., Butler, G.E., Anderson, O.D. et al. 2004. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701-712. doi: 10.1534/genetics.104.034868
Qi, L., Echalier, B., Friebe, B., Gill, B.S.. 2003. Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct. Integr. Genomics 3:39-55.
Quraishi, U.M., Abrouk, M., Bolot, S., Pont, C., Throude, M., Guilhot, N. et al. 2009. Genomics in cereals: From genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct. Integr. Genomics 9:473-484. doi: 10.1007/s10142-009-0129-8http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000270633700005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Raats, D., Frenkel, Z., Krugman, T., Dodek, I., Sela, H., Šimková, H. et al. 2013. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol. 14:R138. doi: 10.1186/gb-2013-14-12-r138
Rustenholz, C., Hedley, P.E., Morris, J., Choulet, F., Feuillet, C., Paux, E.. 2010. Specific patterns of gene space organization revealed in wheat by using the combination of barley and wheat genomic resources. BMC Genomics 11:714. doi: 10.1186/1471-2164-11-714
Šafář, J., Šimková, H., Kubaláková, M., Číhalíková, J., Suchánková, P., Bartos, J. et al. 2010. Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet. Genome Res. 129:211-223. doi: 10.1159/000313072http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000280519500023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Salameh, A., Buerstmayr, M., Steiner, B., Neumayer, A., Lemmens, M., Buerstmay, H.. 2011. Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits. Mol. Breed. 28:485-494. doi: 10.1007/s11032-010-9498-xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000297173800006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Scalabrin, S., Morgante, M., Policriti, A.. 2009. Automated fingerprint background removal: FPB. BMC Bioinf. 10:127. doi: 10.1186/1471-2105-10-127
Sears, E.R. 1966. Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley, R., Lewis, K.R., editors, Chromosome manipulations and plant genetics. Oliver and Boyd, Edinburgh. p. 20-45.
Sears, E.R., Sears, L.M.S.. 1978. The telocentric chromosomes of common wheat. In: Ramanujam, S., editor, Proceedings of the 5th International Wheat Genetics Symposium. Indian Society of Genetics and Plant Breeding, New Delhi. p. 389-407.
Sehgal, S.K., Li, W., Rabinowicz, P.D., Chan, A., Šimkova, H., Doležel, J. et al. 2012. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC Plant Biol. 12:64. doi: 10.1186/1471-2229-12-64
Šimková, H., Šafář, J., Kubaláková, M., Suchánková, P., Číhalíková, J., Robert-Quatre, H. et al. 2011. BAC Libraries from Wheat Chromosome 7D: Efficient Tool for Positional Cloning of Aphid Resistance Genes. J. Biomed. Biotechnol. 2011:302543. doi: 10.1155/2011/302543
Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z., Tai, Y.S., Gill, B.S. et al. 2006. Molecular characterization of the major wheat domestication gene Q. Genetics 172:547-555. doi: 10.1534/genetics.105.044727http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000235197700048&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Soderlund, C., Humphray, S., Dunham, A., French, L.. 2000. Contigs built with fingerprints, markers, and FPC V4.7. Genome Res. 10:1772-1787. doi: 10.1101/gr.GR-1375R
Soderlund, C., Longden, I., Mott, R.. 1997. FPC: A system for building contigs from restriction fingerprinted clones. CABIOS Comput. Appl. Biosci. 13:523-535.
Somers, D.J., Isaac, P., Edwards, K.. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109:1105-1114. doi: 10.1007/s00122-004-1740-7
Stein, N., Herren, G., Keller, B.. 2001. A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed. 120:354-356. doi: 10.1046/j.1439-0523.2001.00615.x
Tondelli, A., Francia, E., Barabaschi, D., Pasquariello, M., Pecchioni, N. et al. 2011. Inside the CBF locus in Poaceae. Plant Sci. 180:39-45. doi: 10.1016/j.plantsci.2010.08.012http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000284814400006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Tranquilli, G., Heaton, J., Chicaiza, O., Dubcovsky, J.. 2002. Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture. Crop Sci. 42:1812-1817. doi: 10.2135/cropsci2002.1812
Vágújfalvi, A., Galiba, G., Cattivelli, L., Dubcovsky, J. et al. 2003. The cold regulated transcriptional activator Cbf3 is linked to the frost-tolerance gene Fr-A2 on wheat chromosome 5A. Mol. Genet. Genomics 269:60-67.
Van Oeveren, J., de Ruiter, M., Jesse, T., van der Poel, H., Tang, J., Yalcin, F. et al. 2011. Sequence-based physical mapping of complex genomes by whole genome profiling. Genome Res. 21:618-625. doi: 10.1101/gr.112094.110http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000289067800012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Van Ooijen, J.W. 2006. Joinmap 4: Software for the calculation of genetic linkage maps in experimental populations. Kyazma, B.V., Wageningen, the Netherlands.
Vitulo, N., Albiero, A., Forcato, C., Campagna, C., Dal Pero, F., Bagnaresi, P. et al. 2011. First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS ONE 6:e26421. doi: 10.1371/journal.pone.0026421
Vrána, J., Kubaláková, M., Šimková, H., Číhalíková, J., Lysák, M.A., Doležel, J.. 2000. Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033-2041.
Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B.E. et al. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 12:787-796. doi: 10.1111/pbi.12183http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000339488200015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Wicker, T., Matthews, D.E., Keller, B.. 2002. TREP: A database for Triticeae repetitive elements. Trends Plant Sci. 7:561-562. doi: 10.1016/S1360-1385(02)02372-5
Xue, S., Zhang, Z., Lin, F., Kong, Z., Cao, Y., Li, C.. 2008. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor. Appl. Genet. 117:181-189. doi: 10.1007/s00122-008-0764-9http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000257125700005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Yim, Y.S., Moak, P., Sanchez-Villeda, H., Musket, T.A., Close, P., Klein, P.E. et al. 2007. A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps. BMC Genomics 8:47. doi: 10.1186/1471-2164-8-47
You, F.M., Luo, M.C., Gu, Y.Q., Lazo, G.R., Deal, K., Dvorak, J. et al. 2007. GenoProfiler: Batch processing of high-throughput capillary fingerprinting data. Bioinformatics 23:240-242. doi: 10.1093/bioinformatics/btl494http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000243992400053&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
You, F.M., Wanjugi, H., Huo, N., Lazo, G.R., Luo, M.-C., Anderson, O.D. et al. 2010. RJPrimers: Unique transposable element insertion junction discovery and PCR primer design for marker development. Nucleic Acids Res. 38:W313-W320. doi: 10.1093/nar/gkq425http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000284148900050&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Zhang, J. 2003. Evolution by gene duplication: An update. Trends Ecol. Evol. 18:292-298. doi: 10.1016/S0169-5347(03)00033-8
Zhou, C., Dong, W., Han, L., Wei, L.J., Jia, L., Tan, Y. et al. 2012. Construction of whole genome radiation hybrid panels and map of chromosome 5A of wheat using asymmetric somatic hybridization. PLoS ONE 7:E40214. doi: 10.1371/journal.pone.0040214