Features of the organization of bread wheat chromosome 5BS based on physical mapping

. 2018 Feb 09 ; 19 (Suppl 3) : 80. [epub] 20180209

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29504906
Odkazy

PubMed 29504906
PubMed Central PMC5836826
DOI 10.1186/s12864-018-4470-y
PII: 10.1186/s12864-018-4470-y
Knihovny.cz E-zdroje

BACKGROUND: The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. RESULTS: A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. CONCLUSION: The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the BAC scaffold length when compared with the published physical maps for other wheat chromosomes. The genetic and bioinformatics resources developed in this study provide new possibilities for exploring chromosome organization and for breeding applications.

Zobrazit více v PubMed

Smith CL, Econome JG, Schutt A, Klco S, Cantor CR. A physical map of the Escherichia coli K12 genome. Science. 1987;236(4807):1448–1453. doi: 10.1126/science.3296194. PubMed DOI

Qiu D, Fujita K, Sakuma Y, Tanaka T, Ohashi Y, Ohshima H, et al. Comparative analysis of physical maps of four Bacillus subtilis (natto) genomes. Appl Environ Microbiol. 2004;70(10):6247–6256. doi: 10.1128/AEM.70.10.6247-6256.2004. PubMed DOI PMC

McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, et al. A physical map of the human genome. Nature. 2001;409(6822):934–941. doi: 10.1038/35057157. PubMed DOI

Gregory SG, Sekhon M, Schein J, Zhao S, Osoegawa K, Scott CE, et al. A physical map of the mouse genome. Nature. 2002;418(6899):743–750. doi: 10.1038/nature00957. PubMed DOI

Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, et al. The Amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome. 2016;9(1):1-14. PubMed

Gu YQ, Ma Y, Huo N, Vogel JP, You FM, Lazo GR, et al. A BAC-based physical map of Brachypodium distachyon andits comparative analysis with rice and wheat. BMC Genomics. 2009;10:496. doi: 10.1186/1471-2164-10-496. PubMed DOI PMC

Poursarebani N, Seidensticker T, Koppolu R, Trautewig C, Gawronski P, Bini F, et al. The genetic basis of composite spike form in barley and ‘Miracle-Wheat’. Genetics. 2015;201:155–165. doi: 10.1534/genetics.115.176628. PubMed DOI PMC

Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science. 2008;322(5898):101–104. doi: 10.1126/science.1161847. PubMed DOI

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-densitypicolitre reactors. Nature. 2005;437(7057):376–380. doi: 10.1038/nature03959. PubMed DOI PMC

Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, Allen AM, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491(7426):705–710. doi: 10.1038/nature11650. PubMed DOI PMC

Mayer KFX, Rogers J, el Dole J, Pozniak C, Eversole K, Feuillet C, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788. doi: 10.1126/science.1251788. PubMed DOI

Chapman JA, Mascher M, Buluç A, Barry K, Georganas E, Session A, et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 2015;16:26. doi: 10.1186/s13059-015-0582-8. PubMed DOI PMC

Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27(5):885–896. doi: 10.1101/gr.217117.116. PubMed DOI PMC

Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357(6346):93–97. doi: 10.1126/science.aan0032. PubMed DOI

McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, et al. Catalogue of Gene Symbols for Wheat. 2013; https://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/GeneCatalogueIntroduction.pdf.

Wu X, Cheng K, Zhao R, Zang S, Bie T, Jiang Z, et al. Quantitative trait loci responsible for sharp eyespot resistance in common wheat CI12633. Scientific Reports. 2017;7:11799.Ruud AK, Windju S, Belova T, Friesen TL, Lillemo M. Mapping of SnTox3–Snn3 as a major determinant of field susceptibility to Septoria nodorum leaf blotch in the SHA3/CBRD × Naxos population. Theor Appl Genet. 2017;130:1361–1374. doi: 10.1007/s00122-017-2893-5. PubMed DOI

Zhou S, Fu L, Wu Q, Chen J, Chen Y, Xie J, et al. QTL mapping revealed TaVp-1A conferred pre-harvest sprouting resistance in wheat population Yanda 1817×Beinong 6. J Integr Agric. 2017;16(2):435–444. doi: 10.1016/S2095-3119(16)61361-8. DOI

Gao F, Liu J, Yang L, Wu X, Xiao Y, Xia X, et al. Genome-wide linkage mapping of QTL for physiological traits in a Chinese wheat population using the 90K SNP array. Euphytica. 2016;209:789–804. doi: 10.1007/s10681-016-1682-6. DOI

Kiseleva AA, Shcherban AB, Leonova IN, Frenkel Z, Salina EA. Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biol. 2016;16(s1):8. doi: 10.1186/s12870-015-0688-x. PubMed DOI PMC

Timonova EM, Dobrovolskaya OB, Sergeeva EM, Bildanova LL, Sourdille P, Feuillet C, et al. A comparative genetic and cytogenetic mapping of wheat chromosome 5B using introgression lines. Russ J Genet. 2013;49(12):1200–1206. doi: 10.1134/S1022795413120132. PubMed DOI

Sergeeva EM, Afonnikov DA, Koltunova MK, Gusev VD, Miroshnichenko LA, Vrána J, et al. Common wheat chromosome 5B composition analysis using low-coverage 454 sequencing. Plant Genome. 2014;7(2):1–16. doi: 10.3835/plantgenome2013.10.0031. DOI

Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant JP, et al. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J. 2010;8(2):196–210. doi: 10.1111/j.1467-7652.2009.00477.x. PubMed DOI

Nesterov MA, Afonnikov DA, Sergeeva EM, Miroshnichenko LA, Bragina MK, Bragin AO, et al. Identification of microsatellite loci based on BAC sequencing data and their physical mapping into the soft wheat 5B chromosome. Russ J Genet Appl Res. 2016;6(8):825–837. doi: 10.1134/S2079059716070078. DOI

Vrána J, Kubalakova M, Simková H, Cihalikova J, Lysak MA, Dolezel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–2041. PubMed PMC

Kubaláková M, Vrána J, Cíhalíková J, Simková H, Dolezel J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.) Theor Appl Genet. 2002;104:1362–1372. doi: 10.1007/s00122-002-0888-2. PubMed DOI

Simková H, Safář J, Kubaláková M, Suchánková P, Cíhalíková J, Robert-Quatre H, et al. BAC libraries from wheat chromosome 7D: efficient tool for positional cloning of aphid resistance genes. J Biomed Biotechnol. 2011;2011:302543. doi: 10.1155/2011/302543. PubMed DOI PMC

Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, et al. High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics. 2003;82(3):378–389. doi: 10.1016/S0888-7543(03)00128-9. PubMed DOI

Scalabrin S, Morgante M, Policriti A. Automated FingerPrint Background removal: FPB. BMC Bioinformatics. 2009;10:127. doi: 10.1186/1471-2105-10-127. PubMed DOI PMC

Soderlund C, Humphray S, Dunham A, French L. Contigs built with fingerprints, markers, and FPC V4. 7. Genome Res. 2000;10:1772–1787. doi: 10.1101/gr.GR-1375R. PubMed DOI PMC

Frenkel Z, Paux E, Mester D, Feuillet C, Korol A. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes. BMC Bioinformatics. 2010;11:584. doi: 10.1186/1471-2105-11-584. PubMed DOI PMC

Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H, et al. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol. 2013;14(12):R138. doi: 10.1186/gb-2013-14-12-r138. PubMed DOI PMC

Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C, et al. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol. 2013;14:R64. doi: 10.1186/gb-2013-14-6-r64. PubMed DOI PMC

Barabaschi D, Magni F, Volante A, Gadaleta A, Šimková H, Scalabrin S, et al. Physical mapping of bread wheat chromosome 5A: an integrated approach. The Plant Genome. 2015;8(3):24. doi: 10.3835/plantgenome2015.03.0011. PubMed DOI

Mester DI, Ronin YI, Hu Y, Peng J, Nevo E, Korol AB. Efficient multipoint mapping: making use of dominant repulsion-phase markers. Theor Appl Genet. 2003;107(6):1102–1112. doi: 10.1007/s00122-003-1305-1. PubMed DOI

Safár J, Simková H, Kubaláková M, Cíhalíková J, Suchánková P, Bartos J, et al. Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res. 2010;129:211–223. doi: 10.1159/000313072. PubMed DOI

Endelman JB, Plomion C. LPmerge: An R package for merging genetic maps by linear programming. Bioinformatics. 2014;30:1623–1624. doi: 10.1093/bioinformatics/btu091. PubMed DOI

Kumar S, Balyan HS, Gupta PK. Comparative DNA sequence analysis involving wheat, brachypodium and rice genomes using mapped wheat ESTs Triticeae. Genomics Genet. 2012;3(3):25–37.

Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, et al. Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics. 2012;12:573–583. doi: 10.1007/s10142-012-0300-5. PubMed DOI PMC

Philippe R, Choulet F, Paux E, van Oeveren J, Tang J, Wittenberg AH, et al. Whole Genome Profiling provides a robust framework for physical mapping and sequencing in the highly complex and repetitive wheat genome. BMC Genomics. 2012;13:47. doi: 10.1186/1471-2164-13-47. PubMed DOI PMC

Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R, et al. A physical map of the short arm of wheat chromosome 1A. PLoS One. 2013;8(11):e80272. doi: 10.1371/journal.pone.0080272. PubMed DOI PMC

Lucas SJ, Akpınar BA, Kantar M, Weinstein Z, Aydınoğlu F, Safář J, et al. Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A. PLoS One. 2013;8(4):e59542. doi: 10.1371/journal.pone.0059542. PubMed DOI PMC

Poursarebani N, Nussbaumer T, Simková H, Safář J, Witsenboer H, van Oeveren J, et al. Whole genome profiling (WGP(TM)) and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. Plant J. 2014;79(2):334–347. doi: 10.1111/tpj.12550. PubMed DOI PMC

Kobayashi F, Wu J, Kanamori H, Tanaka T, Katagiri S, Karasawa W, et al. A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B. BMC Genomics. 2015;16:595. doi: 10.1186/s12864-015-1803-y. PubMed DOI PMC

Holušová K, Vrána J, Šafář J, Šimková H, Balcárková B, Frenkel Z, et al. Physical Map of the Short Arm of Bread Wheat Chromosome 3D. Plant Genome. 2017;10(2) plantgenome2017.03.0021 PubMed

Akpinar BA, Magni F, Yuce M, Lucas SJ, Šimková H, Šafář J, et al. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics. 2015;16:453. doi: 10.1186/s12864-015-1641-y. PubMed DOI PMC

Sergeeva EA, Shcherban AB, Adonina IG, Nesterov MA, Beletsky AV, Rakitin AL, et al. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome. BMC Plant Biol. 2017;17(Suppl 1):183. doi: 10.1186/s12870-017-1120-5. PubMed DOI PMC

Lesage V, Choulet F, Vautrin S, Salina E, Debote M-C, Charef B, et al. Exploitation of the 5BS physical map to complete the SKr crossability locus: Plant and Animal genome conference XXIV; 2016. https://pag.confex.com/pag/xxiv/webprogram/Paper19749.html

Qureshi N, Bariana H, Forrest K, Hayden M, Keller B, Wicker T, et al. Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat. Theor Appl Genet. 2017;30:495–504. doi: 10.1007/s00122-016-2829-5. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nuclear Disposition of Alien Chromosome Introgressions into Wheat and Rye Using 3D-FISH

. 2019 Aug 25 ; 20 (17) : . [epub] 20190825

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...