Nuclear Disposition of Alien Chromosome Introgressions into Wheat and Rye Using 3D-FISH
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-13853S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund OPVVV project
PubMed
31450653
PubMed Central
PMC6747102
DOI
10.3390/ijms20174143
PII: ijms20174143
Knihovny.cz E-zdroje
- Klíčová slova
- 3D-FISH, barley, chromatin, hybrid, introgression, nucleus, rye, wheat,
- MeSH
- buněčné jádro MeSH
- chromatin genetika MeSH
- chromozomy rostlin * MeSH
- hybridizace in situ fluorescenční * metody MeSH
- interfáze * genetika MeSH
- ječmen (rod) genetika MeSH
- počítačové zpracování obrazu MeSH
- průtoková cytometrie MeSH
- pšenice genetika MeSH
- žito genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin MeSH
During interphase, the chromosomes of eukaryotes decondense and they occupy distinct regions of the nucleus, called chromosome domains or chromosome territories (CTs). In plants, the Rabl's configuration, with telomeres at one pole of nucleus and centromeres at the other, appears to be common, at least in plants with large genomes. It is unclear whether individual chromosomes of plants adopt defined, genetically determined addresses within the nucleus, as is the case in mammals. In this study, the nuclear disposition of alien rye and barley chromosomes and chromosome arm introgressions into wheat while using 3D-FISH in various somatic tissues was analyzed. All of the introgressed chromosomes showed Rabl's orientation, but their relative positions in the nuclei were less clear. While in most cases pairs of introgressed chromosomes occupied discrete positions, their association (proximity) along their entire lengths was rare, and partial association only marginally more frequent. This arrangement is relatively stable in various tissues and during various stages of the cell cycle. On the other hand, the length of a chromosome arm appears to play a role in its positioning in a nucleus: shorter chromosomes or chromosome arms tend to be located closer to the centre of the nucleus, while longer arms are more often positioned at the nuclear periphery.
Zobrazit více v PubMed
Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2001;2:292–301. doi: 10.1038/35066075. PubMed DOI
Fritz A.J., Barutcu A.R., Martin-Buley L., van Wijnen A.J., Zaidi S.K., Imbalzano A.N., Lian J.B., Stein J.L., Stein G.S. Chromosomes at work: Organization of chromosome territories in the interphase nucleus. J. Cell. Biochem. 2016;117:9–19. doi: 10.1002/jcb.25280. PubMed DOI PMC
Sun F.L., Cuaycong M.H., Craig C.A., Wallrath L.L., Locke J., Eigin S.C.R. The fourth chromosome of Drosophila melanogaster: Interspersed euchromatic and heterochromatic domains. Proc. Natl. Acad. Sci. USA. 2000;97:5340–5345. doi: 10.1073/pnas.090530797. PubMed DOI PMC
Kozubek S., Lukasova E., Jirsova P., Koutna I., Kozubek M., Ganova A., Bartova E., Falk M., Pasekova R. 3D Structure of the human genome: order in randomness. Chromosoma. 2002;111:321–331. doi: 10.1007/s00412-002-0210-8. PubMed DOI
Mayer R., Brero A., von Hase J., Schroeder T., Cremer T., Dietzel S. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. Bmc Cell Biol. 2005;6:44. doi: 10.1186/1471-2121-6-44. PubMed DOI PMC
Gorkin D.U., Leung D., Ren B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell. 2014;14:762–775. doi: 10.1016/j.stem.2014.05.017. PubMed DOI PMC
Croft J.A., Bridger J.M., Boyle S., Perry P., Teague P., Bickmore W.A. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 1999;145:1119–1131. doi: 10.1083/jcb.145.6.1119. PubMed DOI PMC
Cremer M., von Hase J., Volm T., Brero A., Kreth G., Walter J., Fischer C., Solovei I., Cremer C., Cremer T. Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res. 2001;9:541–567. doi: 10.1023/A:1012495201697. PubMed DOI
Tanabe H., Muller S., Neusser M., von Hase J., Calcagno E., Cremer M., Solovei I., Cremer C., Cremer T. Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc. Natl. Acad. Sci. USA. 2002;99:4424–4429. doi: 10.1073/pnas.072618599. PubMed DOI PMC
Habermann F.A., Cremer M., Walter J., Kreth G., von Hase J., Bauer K., Wienberg J., Cremer C., Cremer T., Solovei I. Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res. 2001;9:569–584. doi: 10.1023/A:1012447318535. PubMed DOI
Manvelyan M., Hunstig F., Bhatt S., Mrasek K., Pellestor F., Weise A., Simonyan I., Aroutiounian R., Liehr T. Chromosome distribution in human sperm—A 3D multicolor banding-study. Mol. Cytogenet. 2008;1:25. doi: 10.1186/1755-8166-1-25. PubMed DOI PMC
Manvelyan M., Hunstig F., Mrasek K., Bhatt S., Pellestor F., Weise A., Liehr T. Position of chromosomes 18, 19, 21 and 22 in 3D-preserved interphase nuclei of human and gorilla and white hand gibbon. Mol. Cytogenet. 2008;1:9. doi: 10.1186/1755-8166-1-9. PubMed DOI PMC
Rabl C. Über Zellteilung. Morph. Jahrb. 1885;10:214–330.
Dong F.G., Jiang J.M. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 1998;6:551–558. doi: 10.1023/A:1009280425125. PubMed DOI
Schubert I., Shaw P. Organization and dynamics of plant interphase chromosomes. Trends Plant Sci. 2011;16:273–281. doi: 10.1016/j.tplants.2011.02.002. PubMed DOI
Pecinka A., Schubert V., Meister A., Kreth G., Klatte M., Lysak M.A., Fuchs J., Schubert I. Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma. 2004;113:258–269. doi: 10.1007/s00412-004-0316-2. PubMed DOI
Fransz P., de Jong J.H., Lysak M., Castiglione M.R., Schubert I. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl. Acad. Sci. USA. 2002;99:14584–14589. doi: 10.1073/pnas.212325299. PubMed DOI PMC
Schubert V., Rudnik R., Schubert I. Chromatin associations in arabidopsis interphase nuclei. Front. Genet. 2014;5:389. doi: 10.3389/fgene.2014.00389. PubMed DOI PMC
Berr A., Schubert I. Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics. 2007;176:853–863. doi: 10.1534/genetics.107.073270. PubMed DOI PMC
Dekker J., Rippe K., Dekker M., Kleckner N. Capturing chromosome conformation. Science. 2002;295:1306–1311. doi: 10.1126/science.1067799. PubMed DOI
Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–293. doi: 10.1126/science.1181369. PubMed DOI PMC
Dixon J.R., Selvaraj S., Yue F., Kim A., Li Y., Shen Y., Hu M., Liu J.S., Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–380. doi: 10.1038/nature11082. PubMed DOI PMC
Abney J.R., Cutler B., Fillbach M.L., Axelrod D., Scalettar B.A. Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J. Cell Biol. 1997;137:1459–1468. doi: 10.1083/jcb.137.7.1459. PubMed DOI PMC
Dong P., Tu X., Li H., Zhang J., Grierson D., Li P., Zhong S. Tissue-specific Hi-C analyses of rice, foxtail millet and maize suggest non-canonical function of plant chromatin domains. J. Intagr. Plant Biol. 2019 doi: 10.1111/jipb.12809. PubMed DOI
Doyle J.J., Flagel L.E., Paterson A.H., Rapp R.A., Soltis D.E., Soltis P.S., Wendel J.F. Evolutionary genetics of genome merger and doubling in plants. Annu. Rev. Genet. 2008;42:443–461. doi: 10.1146/annurev.genet.42.110807.091524. PubMed DOI
Schardin M., Cremer T., Hager H.D., Lang M. Specific staining of human-chromosomes in chinese-hamster x man hybrid cell-lines demonstrates interphase chromosome territories. Hum. Genet. 1985;71:281–287. doi: 10.1007/BF00388452. PubMed DOI
Sengupta K., Camps J., Mathews P., Barenboim-Stapleton L., Nguyen Q.T., Difilippantonio M.J., Ried T. Position of human chromosomes is conserved in mouse nuclei indicating a species-independent mechanism for maintaining genome organization. Chromosoma. 2008;117:499–509. doi: 10.1007/s00412-008-0171-7. PubMed DOI PMC
Heslopharrison J.S., Leitch A.R., Schwarzacher T., Anamthawatjonsson K. Detection and characterization of 1b/1r translocations in hexaploid wheat. Heredity. 1990;65:385–392. doi: 10.1038/hdy.1990.108. DOI
Kopecky D., Allen D.C., Duchoslav M., Dolezel J., Lukaszewski A.J. Condensation of rye chromatin in somatic interphase nuclei of Ph1 and ph1b wheat. Cytogenet. Genome Res. 2007;119:263–267. doi: 10.1159/000112072. PubMed DOI
Schlegel R., Melz G., Nestrowicz R. A Universal reference karyotype in rye, Secale cereale L. Theor. Appl. Genet. 1987;74:820–826. doi: 10.1007/BF00247563. PubMed DOI
Naranjo T. Variable patterning of chromatin remodeling, telomere positioning, synapsis, and chiasma formation of individual rye chromosomes in meiosis of wheat-rye additions. Front. Plant Sci. 2018;9:880. doi: 10.3389/fpls.2018.00880. PubMed DOI PMC
Gill B.S., Friebe B., Endo T.R. Standard karyotype and nomenclature system for description of chromosome bands and structural-aberrations in wheat (Triticum aestivum) Genome. 1991;34:830–839. doi: 10.1139/g91-128. DOI
Paux E., Sourdille P., Salse J., Saintenac C., Choulet F., Leroy P., Korol A., Michalak M., Kianian S., Spielmeyer W., et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science. 2008;322:101–104. doi: 10.1126/science.1161847. PubMed DOI
Salina E.A., Nesterov M.A., Frenkel Z., Kiseleva A.A., Timonova E.M., Magni F., Vrana J., Safar J., Simkova H., Dolezel J., et al. Features of the organization of bread wheat chromosome 5BS based on physical mapping. Bmc Genom. 2018;19:80. doi: 10.1186/s12864-018-4470-y. PubMed DOI PMC
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., Radchuk V., Dockter C., Hedley P.E., Russell J., et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:426. doi: 10.1038/nature22043. PubMed DOI
Dolezel J., Greilhuber J., Lucretti S., Meister A., Lysak M.A., Nardi L., Obermayer R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann. Bot. 1998;82:17–26. doi: 10.1093/oxfordjournals.aob.a010312. DOI
Sequeira-Mendes J., Gutierrez C. Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus. Chromosoma. 2016;125:455–469. doi: 10.1007/s00412-015-0538-5. PubMed DOI
Abranches R., Beven A.F., Aragon-Alcaide L., Shaw P.J. Transcription sites are not correlated with chromosome territories in wheat nuclei. J. Cell Biol. 1998;143:5–12. doi: 10.1083/jcb.143.1.5. PubMed DOI PMC
Mikhailova E.I., Sosnikhina S.P., Kirillova G.A., Tikholiz O.A., Smirnov V.G., Jones R.N., Jenkins G. Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.) J. Cell Biol. 2001;114:1875–1882. PubMed
Corredor E., Diez M., Shepherd K., Naranjo T. The positioning of rye homologous chromosomes added to wheat through the cell cycle in somatic cells untreated and treated with colchicine. Cytogenet. Genome Res. 2005;109:112–119. doi: 10.1159/000082389. PubMed DOI
Idziak D., Robaszkiewicz E., Hasterok R. Spatial distribution of centromeres and telomeres at interphase varies among brachypodium species. J. Exp. Bot. 2015;66:6623–6634. doi: 10.1093/jxb/erv369. PubMed DOI PMC
Parada L.A., Misteli T. Chromosome positioning in the interphase, nucleus. Trends Cell Biol. 2002;12:425–432. doi: 10.1016/S0962-8924(02)02351-6. PubMed DOI
Schwarzacher T., Leitch A.R., Bennett M.D., Heslop-Harrison J.S. In situ localization of parental genomes in a wide hybrid. Ann. Bot. 1989;64:315–324. doi: 10.1093/oxfordjournals.aob.a087847. DOI
Schubert I., Shi F., Fuchs J., Endo T.R. An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J. 1998;14:489–495. doi: 10.1046/j.1365-313X.1998.00125.x. DOI
Robaszkiewicz E., Idziak-Helmcke D., Tkacz M.A., Chrominski K., Hasterok R. The arrangement of Brachypodium distachyon chromosomes in interphase nuclei. J. Exp. Bot. 2016;67:5571–5583. doi: 10.1093/jxb/erw325. PubMed DOI PMC
Fung J.C., Marshall W.F., Dernburg A., Agard D.A., Sedat J.W. Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J. Cell Biol. 1998;141:5–20. doi: 10.1083/jcb.141.1.5. PubMed DOI PMC
Baroux C., Pecinka A., Fuchs J., Kreth G., Schubert I., Grossniklaus U. Non-random chromosome arrangement in triploid endosperm nuclei. Chromosoma. 2017;126:115–124. doi: 10.1007/s00412-016-0578-5. PubMed DOI
Hiraoka Y., Dernburg A.F., Parmelee S.J., Rykowski M.C., Agard D.A., Sedat J.W. The onset of homologous chromosome-pairing during Drosophila melanogaster embryogenesis. J. Cell Biol. 1993;120:591–600. doi: 10.1083/jcb.120.3.591. PubMed DOI PMC
Bornfleth H., Edelmann P., Zink D., Cremer T., Cremer C. Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys. J. 1999;77:2871–2886. doi: 10.1016/S0006-3495(99)77119-5. PubMed DOI PMC
Lucas J.N., Cervantes E. Significant large-scale chromosome territory movement occurs as a result of mitosis, but not during interphase. Int. J. Rad. Biol. 2002;78:449–455. doi: 10.1080/09553000110097190. PubMed DOI
Lam E., Kato N., Watanabe K. Visualizing chromosome structure/organization. Annu. Rev. Plant Biol. 2004;55:537–554. doi: 10.1146/annurev.arplant.55.031903.141807. PubMed DOI
Kato N., Lam E. Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J. Cell Sci. 2003;116:2195–2201. doi: 10.1242/jcs.00437. PubMed DOI
Gartenberg M.R., Neumann F.R., Laroche T., Blaszczyk M., Gasser S.M. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell. 2004;119:955–967. doi: 10.1016/j.cell.2004.11.008. PubMed DOI
Tiang C.L., He Y., Pawlowski W.P. Chromosome organization and dynamics during Interphase, mitosis, and meiosis in plants. Plant Physiol. 2012;158:26–34. doi: 10.1104/pp.111.187161. PubMed DOI PMC
Soutoglou E., Misteli T. Mobility and immobility of chromatin in transcription and genome stability. Curr. Opin. Genet. Dev. 2007;17:435–442. doi: 10.1016/j.gde.2007.08.004. PubMed DOI PMC
Jasencakova Z., Meister A., Schubert I. Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma. 2001;110:83–92. doi: 10.1007/s004120100132. PubMed DOI
Bolzer A., Kreth G., Solovei I., Koehler D., Saracoglu K., Fauth C., Muller S., Eils R., Cremer C., Speicher M.R., et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 2005;3:826–842. doi: 10.1371/journal.pbio.0030157. PubMed DOI PMC
Bauer E., Schmutzer T., Barilar I., Mascher M., Gundlach H., Martis M.M., Twardziok S.O., Hackauf B., Gordillo A., Wilde P., et al. Towards a whole-genome sequence for rye (Secale cereale L.) Plant J. 2017;89:853–869. doi: 10.1111/tpj.13436. PubMed DOI
Schwarzacher-Robinson T., Finch R.A., Smith J.B., Bennett M.D. Genotypic control of centromere positions of parental genomes in Hordeum x Secale hybrid metaphases. J. Cell Sci. 1987;87:291–304.
Leitch A.R., Schwarzacher T., Mosgoller W., Bennett M.D., Heslop-Harrison J.S. Parental genomes are separated throughout the cell cycle in a plant hybrid. Chromosoma. 1991;101:206–213. doi: 10.1007/BF00365152. DOI
Lukaszewski A.J. Behavior of Centromeres in Univalents and Centric Misdivision in Wheat. Cytogenet. Genome Res. 2010;129:97–109. doi: 10.1159/000314108. PubMed DOI
Pernickova K., Kolackova V., Lukaszewski A.J., Fan C.L., Vrana J., Duchoslav M., Jenkins G., Phillips D., Samajova O., Sedlarova M., et al. Instability of alien chromosome introgressions in wheat associated with improper positioning in the nucleus. Int. J. Mol. Sci. 2019;20:1448. doi: 10.3390/ijms20061448. PubMed DOI PMC
Ito H., Nasuda S., Endo T.R. A direct repeat sequence associated with the centromeric retrotransposons in wheat. Genome. 2004;47:747–756. doi: 10.1139/g04-034. PubMed DOI
Insight into chromatin compaction and spatial organization in rice interphase nuclei
Auxin Metabolite Profiling in Isolated and Intact Plant Nuclei
Chromatin, Epigenetics and Plant Physiology