Insight into chromatin compaction and spatial organization in rice interphase nuclei
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38863533
PubMed Central
PMC11165205
DOI
10.3389/fpls.2024.1358760
Knihovny.cz E-zdroje
- Klíčová slova
- 3D immuno-FISH, chromosome painting, chromosome territory, microscopy, rice, spatial organization,
- Publikační typ
- časopisecké články MeSH
Chromatin organization and its interactions are essential for biological processes, such as DNA repair, transcription, and DNA replication. Detailed cytogenetics data on chromatin conformation, and the arrangement and mutual positioning of chromosome territories in interphase nuclei are still widely missing in plants. In this study, level of chromatin condensation in interphase nuclei of rice (Oryza sativa) and the distribution of chromosome territories (CTs) were analyzed. Super-resolution, stimulated emission depletion (STED) microscopy showed different levels of chromatin condensation in leaf and root interphase nuclei. 3D immuno-FISH experiments with painting probes specific to chromosomes 9 and 2 were conducted to investigate their spatial distribution in root and leaf nuclei. Six different configurations of chromosome territories, including their complete association, weak association, and complete separation, were observed in root meristematic nuclei, and four configurations were observed in leaf nuclei. The volume of CTs and frequency of their association varied between the tissue types. The frequency of association of CTs specific to chromosome 9, containing NOR region, is also affected by the activity of the 45S rDNA locus. Our data suggested that the arrangement of chromosomes in the nucleus is connected with the position and the size of the nucleolus.
Zobrazit více v PubMed
Abbe E. (1873). Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrmehmung. Archiv für mikroskopische Anatomie (in German). 9, 413–420. doi: 10.1007/BF02956173 DOI
Abranches R., Beven A. F., Aragón-Aclade L., Shaw P. (1998). Transcription sites are not correlated with chromosome territories in wheat nuclei. J. Cell Biol. 143, 5–12. doi: 10.1083/jcb.143.1.5 PubMed DOI PMC
Albiez H., Creme M., Tiberi C., Vecchio L., Schermelleh L., Dittrich S., et al. . (2006). Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res. 14, 707–733. doi: 10.1007/s10577-006-1086-x PubMed DOI
Anamthawat-Jónsson K., Heslop-Harrison J. S. (1990). Centromeres, telomeres and chromatin in the interphase nucleus of cereals. Caryologia 43, 205–213. doi: 10.1080/00087114.1990.10796999 DOI
Aragón-Alcaide L., Reader S., Beven A., Shaw P., Miller T., Moore G. (1997). Association of homologous chromosomes during floral development. Curr. Biol. 7, 905–908 13. doi: 10.1016/S0960-9822(06)00383-6 PubMed DOI
Avivi L., Feldman M. (1980). Arrangement of chromosomes in the interphase nucleus of plants. Hum. Genet. 55, 281–295. doi: 10.1007/BF00290206 PubMed DOI
Bass H. W., Marshall W. F., Sedat J. W., Agard D. A., Cande W. Z. (1997). Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J. Cell Biol. 137, 5–18. doi: 10.1083/jcb.137.1.5 PubMed DOI PMC
Bass H. W., Wear E. E., Lee T. J., Hoffman G. G., Gumber H. K., Allen G. C., et al. . (2014). A maize root tip system to study DNA replication programmes in somatic and endocycling nuclei during plant development. J. Exp. Bot. 65, 2747–2756. doi: 10.1093/jxb/ert470 PubMed DOI
Belmont A. S. (2014). Large-scale chromatin organization: the good, the surprising, and the still perplexing. Curr. Opin. Cell Biol. 26, 69–78. doi: 10.1016/j.ceb.2013.10.002 PubMed DOI PMC
Belmont A. S., Bruce K. (1994). Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J. Cell Biol. 127, 287–302. doi: 10.1083/jcb.127.2.287 PubMed DOI PMC
Berr A., Schubert I. (2007). Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics 176, 853–863. doi: 10.1534/genetics.107.073270 PubMed DOI PMC
Bordas J., Perez-Grau L., Koch M. H. J., Vega M. C., Nave C. (1986). The superstructure of chromatin and its condensation mechanism: II. Theoretical analysis of the x-ray scattering patterns and model calculations. Eur. Biophys. J. 13, 175–185. doi: 10.1007/BF00542561 PubMed DOI
Brown W. S., Shaw P. J. (1998). Nucleolar RNAs and pre-rRNA processing in plants. Plant Cell 10, 649–657. doi: 10.1105/tpc.10.5.649 PubMed DOI PMC
Bystricky K., Heun P., Gehlen L., Langowski J., Gasser S. M. (2004). Long range compaction and flexibility of interphase chromatin in budding yeast analysed by high-resolution imaging techniques. Proc. Natl. Acad. Sci. 101, 16495–16500. doi: 10.1073/pnas.0402766101 PubMed DOI PMC
Chubb J. R., Boyle S., Perry P., Bickmore W. A. (2002). Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445. doi: 10.1016/S0960-9822(02)00695-4 PubMed DOI
Concia L., Veluchamy A., Ramirez-Prado J. S., Martin-Ramirez A., Huang Y., Perez M., et al. . (2020). Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol. 21, 1–20. doi: 10.1186/s13059-020-01998-1 PubMed DOI PMC
Cremer M., Cremer T. (2019). Nuclear compartmentalization, dynamics, and function of regulatory DNA sequences. Genes Chromosomes Cancer 58, 427–436. doi: 10.1002/gcc.22714 PubMed DOI
Cremer M., Schmid V. J., Kraus F., Markaki Y., Hellmann I., Maiser A., et al. . (2017). Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenet. Chromatin 10, 1–17. doi: 10.1186/s13072-017-0146-0 PubMed DOI PMC
Cremer T., Cremer M., Dietzel S., Müller S., Solovei I., Fakan S. (2006). Chromosome territories–a functional nuclear landscape. Curr. Opin. Cell Biol. 18, 307–316. doi: 10.1016/j.ceb.2006.04.007 PubMed DOI
Cseresnyes Z., Schwarz U., Green C. M. (2009). Analysis of replication factories in human cells by super-resolution light microscopy. BMC Cell Biol. 10, 88. doi: 10.1186/1471-2121-10-88 PubMed DOI PMC
de Almeida Engler J., De Groodt R., Van Montagu M., Engler G. (2001). In situ hybridization to mRNA of Arabidopsis tissue sections. Methods 23, 325–334. doi: 10.1006/meth.2000.1144 PubMed DOI
de Graaf C. A., van Steensel B. (2013). Chromatin organization: form to function. Curr. Opin. Genet. Dev. 23, 185–190. doi: 10.1016/j.gde.2012.11.011 PubMed DOI
Dehghani H., Dellaire G., Bazett-Jones D. P. (2005). Organization of chromatin in the interphase mammalian cell. Micron 36, 95–108. doi: 10.1016/j.micron.2004.10.003 PubMed DOI
Dekker J., Rippe K., Dekker M., Kleckner N. (2002). Capturing chromosome conformation. Science 295, 1306–1311. doi: 10.1126/science.1067799 PubMed DOI
Derenzini M., Trere D., Pession A., Montanaro L., Sirri V., Ochs R. L. (1998). Nucleolar function and size in cancer cells. Am. J. Pathol. 152, 1291. PubMed PMC
Doležel J., Binarová P., Lucretti S. (1989). Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant 31, 113–120. doi: 10.1007/BF02907241 DOI
Doležel J., Sgorbati S., Lucretti S. (1992). Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant 85, 625–631. doi: 10.1111/j.1399-3054.1992.tb04764.x DOI
Dong F., Jiang J. (1998). Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 6, 551–558. doi: 10.1023/A:1009280425125 PubMed DOI
Dong Q., Li N., Li X., Yuan Z., Xie D., Wang X., et al. . (2018). Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J. 94, 1141–1156. doi: 10.1111/tpj.13925 PubMed DOI
Dong P., Tu X., Chu P. Y., Lü P., Zhu N., Grierson D., et al. . (2017). 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10, 1497–1509. doi: 10.1016/j.molp.2017.11.005 PubMed DOI
Dumur T., Duncan S., Graumann K., Desset S., Randall R. S., Scheid O. M., et al. . (2019). Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions. Nucleus 10, 181–212. doi: 10.1080/19491034.2019.1644592 PubMed DOI PMC
Dvořáčková M., Fajkus J. (2018). Visualization of the nucleolus using ethynyl uridine. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00177 PubMed DOI PMC
Feng S., Cokus S. J., Schubert V., Zhai J., Pellegrini M., Jacobsen S. E. (2014). Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55, 694–707. doi: 10.1016/j.molcel.2014.07.008 PubMed DOI PMC
Finch J. T., Klug A. (1976). Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. U.S.A 73, 1897–1901. doi: 10.1073/pnas.73.6.1897 PubMed DOI PMC
Fransz P., De Jong J. H., Lysák M., Castiglione M. R., Schubert I. (2002). Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl. Acad. Sci. 99, 22, 14584–14589. doi: 10.1073/pnas.212325299 PubMed DOI PMC
Frolikova M., Blazikova M., Capek M., Chmelova H., Valecka J., Kolackova V., et al. . (2023). A sample preparation procedure enables acquisition of 2-channel super-resolution 3D STED image of an entire oocyte. bioRxiv, 2023–2003. doi: 10.1101/2023.03.07.531472 DOI
Fudenberg G., Imakaev M. (2017). FISH-ing for captured contacts: towards reconciling FISH and 3C. Nat. Methods 14, 673–678. doi: 10.1038/nmeth.4329 PubMed DOI PMC
Fujimoto S., Ito M., Matsunaga S., Fukui K. (2005). An upper limit of the ratio of DNA volume to nuclear volume exists in plants. Genes Genet. Syst. 80, 345–350. doi: 10.1266/ggs.80.345 PubMed DOI
Gelléri M., Chen S. Y., Hübner B., Neumann J., Kröger O., Sadlo F., et al. . (2023). True-to-scale DNA-density maps correlate with major accessibility differences between active and inactive chromatin. Cell Rep. 42. doi: 10.1016/j.celrep.2023.112567 PubMed DOI
Germier T., Kocanova S., Walther N., Bancaud A., Shaban H. A., Sellou H., et al. . (2017). Real-time imaging of a single gene reveals transcription-initiated local confinement. Biophys. J. 113, 1383–1394. doi: 10.1016/j.bpj.2017.08.014 PubMed DOI PMC
Gibcus J. H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., et al. . (2018). A pathway for mitotic chromosome formation. Science 359, eaao6135. doi: 10.1126/science.aao6135 PubMed DOI PMC
Giorgetti L., Galupa R., Nora E. P., Piolot T., Lam F., Dekker J., et al. . (2014). Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157, 950–963. doi: 10.1016/j.cell.2014.03.025 PubMed DOI PMC
Golicz A. A., Bhalla P. L., Edwards D., Singh M. B. (2020). Rice 3D chromatin structure correlates with sequence variation and meiotic recombination rate. Commun. Biol. 3, 235. doi: 10.1038/s42003-020-0932-2 PubMed DOI PMC
Grob S., Schmid M. W., Grossniklaus U. (2014). Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693. doi: 10.1016/j.molcel.2014.07.009 PubMed DOI
Hajjoul H., Mathon J., Ranchon H., Goiffon I., Mozziconaci J., Albert B., et al. . (2013). High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res. 23, 1829–1838. doi: 10.1101/gr.157008.113 PubMed DOI PMC
Han Y., Zhang T., Thammapichai P., Weng Y., Jiang J. (2015). Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200, 771–779. doi: 10.1534/genetics.115.177642 PubMed DOI PMC
Hansen J. C., Connolly M., McDonald C. J., Pan A., Pryamkova A., Ray K., et al. . (2018). The 10-nm chromatin fiber and its relationship to interphase chromosome organization. Biochem. Soc Trans. 46, 67–76. doi: 10.1042/BST20170101 PubMed DOI PMC
Heun P., Laroche T., Shimada K., Furrer P., Gasser S. (2001). Chromosome dynamics in the yeast interphase nucleus. Science 294, 2181. doi: 10.1126/science.1065366 PubMed DOI
Hou L., Xu M., Zhang T., Xu Z., Wang W., Zhang J., et al. . (2018). Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biol. 18, 1–10. doi: 10.1186/s12870-018-1325-2 PubMed DOI PMC
Howe E. S., Murphy S. P., Bass H. W. (2013). Three-dimensional acrylamide fluorescence in situ hybridization for plant cells. Plant Meiosis: Methods Protocols. 53–66. doi: 10.1007/978-1-62703-333-6_6 PubMed DOI
Hübner B., Lomiento M., Mammoli F., Illner D., Markaki Y., Ferrari S., et al. . (2015). Remodeling of nuclear landscapes during human myelopoietic cell differentiation maintains co-aligned active and inactive nuclear compartments. Epigenet. Chromatin 8, 1–21. doi: 10.1186/s13072-015-0038-0 PubMed DOI PMC
Idziak D., Robaszkiewicz E., Hasterok R. (2015). Spatial distribution of centromeres and telomeres at interphase varies among Brachypodium species. J. Exp. Bot. 66, 6623–6634. doi: 10.1093/jxb/erv369 PubMed DOI PMC
Jackson D. A., Pombo A. (1998). Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295. doi: 10.1083/jcb.140.6.1285 PubMed DOI PMC
Kaduchová K., Marchetti C., Ovečka. M., Galuszka P., Bergougnoux V., Šamaj J., et al. . (2023). Spatial organization and dynamics of chromosomes and microtubules during barley mitosis. Plant J. 115, 602–613. doi: 10.1111/tpj.16355 PubMed DOI
Kato N., Lam E. (2003). Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J. Cell Sci. 116, 2195–2201. doi: 10.1242/jcs.00437 PubMed DOI
Kawahara Y., de la Bastide M., Hamilton J. P., Kanamori H., McCombie W. R., Ouyang S., et al. . (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6, 1–10. doi: 10.1186/1939-8433-6-4 PubMed DOI PMC
Kireeva N., Lakonishok M., Kireev I., Hirano T., Belmont A. S. (2004). Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J. Cell Biol. 166, 775–785. doi: 10.1083/jcb.200406049 PubMed DOI PMC
Koláčková V., Perničková K., Vrána J., Duchoslav M., Jenkins G., Phillips D., et al. . (2019). Nuclear disposition of alien chromosome introgressions into wheat and rye using 3D-FISH. Int. J. Mol. Sci. 20, 4143. doi: 10.3390/ijms20174143 PubMed DOI PMC
Kubalová I., Câmara A. S., Cápal P., Beseda T., Rouillard J. M., Krause G. M., et al. . (2023). Helical coiling of metaphase chromatids. Nucleic Acids Res. 51, 2641–2654. doi: 10.1093/nar/gkad028 PubMed DOI PMC
Leitch A. R., Mosgöller W., Schwarzacher T., Bennett M. D., Heslop-Harrison J. S. (1990). Genomic in situ hybridization to sectioned nuclei shows chromosome domains in grass hybrids. J. Cell Sci. 95, 335–341. doi: 10.1242/jcs.95.3.335 PubMed DOI
Levi V., Ruan Q., Plutz M., Belmont A. S., Gratton E. (2005). Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys. J. 89, 4275–4285. doi: 10.1529/biophysj.105.066670 PubMed DOI PMC
Lieberman-Aiden E., van Berkum N. L., Williams L., Imakaev M., Ragoczy T., Telling A., et al. . (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293. doi: 10.1126/science.1181369 PubMed DOI PMC
Liu C., Cheng Y. J., Wang J. W., Weigel D. (2017). Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat. Plants 3, 742–748. doi: 10.1038/s41477-017-0005-9 PubMed DOI
Liu X., Sun S., Wu Y., Zhou Y., Gu S., Yu H., et al. . (2020). Dual-color oligo-FISH can reveal chromosomal variations and evolution in Oryza species. Plant J. 101, 112–121. doi: 10.1111/tpj.14522 PubMed DOI
Lysák M. A., Fransz P. F., Ali H. B., Schubert I. (2001). Chromosome painting in Arabidopsis thaliana. Plant J. 28, 689–697. doi: 10.1046/j.1365-313x.2001.01194.x PubMed DOI
Maeshima K., Ide S., Babokhov M. (2019). Dynamic chromatin organization without the 30-nm fiber. Curr. Opin. Cell Biol. 58, 95–104. doi: 10.1016/j.ceb.2019.02.003 PubMed DOI
Markaki Y., Smeets D., Fiedler S., Schmid V. J., Schermelleh L., Cremer T., et al. . (2012). The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Bioessays 34, 412–426. doi: 10.1002/bies.201100176 PubMed DOI
Matsuda A., Shao L., Boulanger J., Kervrann C., Carlton P. M., Kner P., et al. . (2010). Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP-histones. PloS One 5, e12768. doi: 10.1371/journal.pone.0012768 PubMed DOI PMC
Misteli T. (2020). The self-organizing genome: principles of genome architecture and function. Cell 183, 28–45. doi: 10.1016/j.cell.2020.09.014 PubMed DOI PMC
Montijn M. B., Houtsmuller A. B., Nanninga J. O. A. N. (1994). The spatial localization of 18 S rRNA genes, in relation to the descent of the cells, in the root cortex of Petunia hybrida. J. Cell Sci. 107, 457–467. doi: 10.1242/jcs.107.3.457 PubMed DOI
Moors T. E., Maat C. A., Niedieker D., Mona D., Petersen D., Timmermans-Huisman E., et al. . (2021). The subcellular arrangement of alpha-synuclein proteoforms in the Parkinson’s disease brain as revealed by multicolor STED microscopy. Acta Neuropathol. 142, 423–448. doi: 10.1007/s00401-021-02329-9 PubMed DOI PMC
Nagano T., Lubling Y., Stevens T. J., Schoenfelder S., Yaffe E., Dean W., et al. . (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64. doi: 10.1038/nature12593 PubMed DOI PMC
Němečková A., Koláčková V., Vrána J., Doležel J., Hřibová E. (2020). DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei. J. Exp. Bot. 71, 6262–6272. doi: 10.1093/jxb/eraa370 PubMed DOI
Nowicka A., Ferková L’., Said M., Kováčik M., Zwyrtková J., Baroux C., et al. . (2023). Non-Rabl chromosome organization in endoreduplicated nuclei of barley embryo and endosperm tissues. J. Exp. Bot. 74, 2527–2541. doi: 10.1093/jxb/erad036 PubMed DOI
Nozaki T., Imai R., Tanbo M., Nagashima R., Tamura S., Tani T., et al. . (2017). Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell 67, 282–293. doi: 10.1016/j.molcel.2017.06.018 PubMed DOI
Nozaki T., Shinkai S., Ide S., Higashi K., Tamura S., Shimazoe M. A., et al. . (2023). Condensed but liquid-like domain organization of active chromatin regions in living human cells. Sci. Adv. 9, eadf1488. doi: 10.1126/sciadv.adf1488 PubMed DOI PMC
Ohmido N., Fukui K. (1995). Cytological studies of African cultivated rice, Oryza glaberrima. Theor. Appl. Genet. 91, 212–217. doi: 10.1007/BF00220880 PubMed DOI
Pečinka A., Schubert V., Meister A., Kreth G., Klatte M., Lysák M. A., et al. . (2004). Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113, 258–269. doi: 10.1007/s00412-004-0316-2 PubMed DOI
Perničková K., Koláčková V., Lukaszewski A. J., Fan C., Vrána J., Duchoslav M., et al. . (2019). Instability of alien chromosome introgressions in wheat associated with improper positioning in the nucleus. Int. J. Mol. Sci. 20, 1448. doi: 10.3390/ijms20061448 PubMed DOI PMC
Prieto E. I., Maeshima K. (2019). Dynamic chromatin organization in the cell. Essays Biochem. 63, 133–145. doi: 10.1042/EBC20180054 PubMed DOI
Prieto P., Shaw P., Moore G. (2004). Homologue recognition during meiosis is associated with a change in chromatin conformation. Nat. Cell Biol. 6, 906. doi: 10.1038/ncb1168 PubMed DOI
Rabl C. (1885). Uber zelltheilung. Morphologisches Jahrbuch 10, 214–330.
Ramani V., Deng X., Qiu R., Gunderson K. L., Steemers F. J., Disteche C. M., et al. . (2017). Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266. doi: 10.1038/nmeth.4155 PubMed DOI PMC
Ramírez F., Bhardwaj V., Arrigoni L., Lam K. C., Grüning B. A., Villaveces J., et al. . (2018). High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189. doi: 10.1038/s41467-017-02525-w PubMed DOI PMC
Randall R. S., Jourdain C., Nowicka A., Kaduchová K., Kubová M., Ayoub M. A., et al. . (2022). Image analysis workflows to reveal the spatial organization of cell nuclei and chromosomes. Nucleus 13, 279–301. doi: 10.1080/19491034.2022.2144013 PubMed DOI PMC
Rawlins D. J., Highett M. I., Shaw P. J. (1991). Localization of telomeres in plant interphase nuclei by in situ hybridization and 3D confocal microscopy. Chromosoma 100, 424–431. doi: 10.1007/BF00364552 DOI
Robaszkiewicz E., Idziak-Helmcke D., Tkacz M. A., Chrominski K., Hasterok R. (2016). The arrangement of Brachypodium distachyon chromosomes in interphase nuclei. J. Exp. Bot. 67, 5571–5583. doi: 10.1093/jxb/erw325 PubMed DOI PMC
Sahl S. J., Hell S. W., Jakobs S. (2017). Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701. doi: 10.1038/nrm.2017.71 PubMed DOI
Santos A. P., Shaw P. (2004). Interphase chromosomes and the Rabl configuration: does genome size matter? J. Microsc. 214, 201–206. doi: 10.1111/j.0022-2720.2004.01324.x PubMed DOI
Schwarzacher T., Heslop-Harrison J. S. (1991). In situ hybridization to plant telomeres using synthetic oligomers. Genome 34, 317–323. doi: 10.1139/g91-052 DOI
Sexton T., Cavalli G. (2015). The role of chromosome domains in shaping the functional genome. Cell 160, 1049–1059. doi: 10.1016/j.cell.2015.02.040 PubMed DOI
Shan W., Kubová M., Mandáková T., Lysak M. A. (2021). Nuclear organization in crucifer genomes: nucleolus-associated telomere clustering is not a universal interphase configuration in Brassicaceae. Plant J. 108, 528–540. doi: 10.1111/tpj.15459 PubMed DOI
Szabo Q., Jost D., Chang J. M., Cattoni D. I., Papadopoulos G. L., Bonev B., et al. . (2018). TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv. 4, eaar8082. doi: 10.1126/sciadv.aar8082 PubMed DOI PMC
Tan L., Xing D., Chang C. H., Li H., Xie X. S. (2018). Three-dimensional genome structures of single diploid human cells. Science 361, 924–928. doi: 10.1126/science.aat5641 PubMed DOI PMC
Tiku V., Antebi A. (2018). Nucleolar function in lifespan regulation. Trends Cell Biol. 28, 662–672. doi: 10.1016/j.tcb.2018.03.007 PubMed DOI
Tulpová Z., Kovařík A., Toegelová H., Navrátilová P., Kapustová V., Hřibová E., et al. . (2022). Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multi-omics approach. Plant Genome 15, e20191. doi: 10.1002/tpg2.20191 PubMed DOI
Valli J., Garcia-Burgos A., Rooney L. M., e Oliveira B. V. D. M., Duncan R. R., Rickman C. (2021). Seeing beyond the limit: a guide to choosing the right super-resolution microscopy technique. J. Biol. Chem. 297. doi: 10.1016/j.jbc.2021.100791 PubMed DOI PMC
Wang C., Liu C., Roqueiro D., Grimm D., Schwab R., Becker C., et al. . (2015). Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res. 25, 246–256. doi: 10.1101/gr.170332.113 PubMed DOI PMC
Woodcock C. L., Frado L. L., Rattner J. B. (1984). The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J. Cell Biol. 99, 42–52. doi: 10.1083/jcb.99.1.42 PubMed DOI PMC
Zhang T., Liu G., Zhao H., Braz G. T., Jiang J. (2021). Chorus2: design of genome-scale oligonucleotide-based probes for fluorescence in situ hybridization. Plant Biotechnol. J. 19, 1967–1978. doi: 10.1111/pbi.13610 PubMed DOI PMC
Zhou S., Jiang W., Zhao Y., Zhou D. X. (2019). Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes. Nat. Plants 5, 795–800. doi: 10.1038/s41477-019-0471-3 PubMed DOI