Instability of Alien Chromosome Introgressions in Wheat Associated with Improper Positioning in the Nucleus

. 2019 Mar 22 ; 20 (6) : . [epub] 20190322

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30909382

Grantová podpora
17-13853S Czech Science Foundation
CZ.02.1.01/0.0/16_019/0000827 European Regional Development Fund

Alien introgressions introduce beneficial alleles into existing crops and hence, are widely used in plant breeding. Generally, introgressed alien chromosomes show reduced meiotic pairing relative to the host genome, and may be eliminated over generations. Reduced pairing appears to result from a failure of some telomeres of alien chromosomes to incorporate into the leptotene bouquet at the onset of meiosis, thereby preventing chiasmate pairing. In this study, we analysed somatic nuclei of rye introgressions in wheat using 3D-FISH and found that while introgressed rye chromosomes or chromosome arms occupied discrete positions in the Rabl's orientation similar to chromosomes of the wheat host, their telomeres frequently occupied positions away from the nuclear periphery. The frequencies of such abnormal telomere positioning were similar to the frequencies of out-of-bouquet telomere positioning at leptotene, and of pairing failure at metaphase I. This study indicates that improper positioning of alien chromosomes that leads to reduced pairing is not a strictly meiotic event but rather a consequence of a more systemic problem. Improper positioning in the nuclei probably impacts the ability of introgressed chromosomes to migrate into the telomere bouquet at the onset of meiosis, preventing synapsis and chiasma establishment, and leading to their gradual elimination over generations.

Zobrazit více v PubMed

Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2001;2:292–301. doi: 10.1038/35066075. PubMed DOI

Fritz A.J., Barutcu A.R., Martin-Buley L., van Wijnen A.J., Zaidi S.K., Imbalzano A.N., Lian J.B., Stein J.L. Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus. J. Cell. Biochem. 2016;117:9–19. doi: 10.1002/jcb.25280. PubMed DOI PMC

Fransz P., de Jong J.H., Lysak M., Castiglione M.R., Schubert I. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl. Acad. Sci. USA. 2002;9:14584–14589. doi: 10.1073/pnas.212325299. PubMed DOI PMC

Tiang C.L., He Y., Pawlowski W.P. Chromosome Organization and Dynamics during Interphase, Mitosis, and Meiosis in Plants. Plant Physiol. 2012;158:26–34. doi: 10.1104/pp.111.187161. PubMed DOI PMC

Rabl C. Über Zellteilung. Morph. Jahrb. 1885;10:214–330.

Dong F.G., Jiang J.M. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 1998;6:551–558. doi: 10.1023/A:1009280425125. PubMed DOI

Dawe R.K. Meiotic chromosome organization and segregation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:371–395. doi: 10.1146/annurev.arplant.49.1.371. PubMed DOI

Moens P.B., Bernei-Moens C., Spyropoulos B. Chromosome core attachment to the meiotic nuclear envelope regulates synapsis in Chloealtis (Orthoptera) Genome. 1989;32:601–610. doi: 10.1139/g89-488. DOI

Curtis C.A., Lukaszewski A.J., Chrzastek M. Metaphase I pairing of deficient chromosomes and genetic mapping of deficiency breakpoints in common wheat. Genome. 1991;34:553–560. doi: 10.1139/g91-085. DOI

Mujeeb-Kazi A. Intergeneric crosses: Hybrid production and utilization. In: Mujeeb-Kazi A., Hettel G.P., editors. Utilizing Wild Grass Biodiversity in Wheat Improvement, 15 Years of Wide cross Research at CIMMYT. CIMMYT; Texcoco, Mexico: 1995. p. 140.

Friebe B., Jiang J., Raupp J.W., Mclntosh R.A., Gill B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica. 1996;91:59–87. doi: 10.1007/BF00035277. DOI

Molnár-Láng M. The crossability of wheat with rye and other related species. In: Molnár-Láng M., Ceoloni C., Doležel J., editors. Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics. Springer International Publishing; Chem, Switzerland: 2015. pp. 103–120.

Nishiyama I. Cytogenetic studies in Avena, IX New synthetic oats in the progenies of induced decaploid interspecific hybrids. Jpn. J. Genet. 1962;37:118–130. doi: 10.1266/jjg.37.118. DOI

Tsunewaki K. Genetic studies on a 6x derivative from an 8x triticale. Can. J. Genet. Cytol. 1964;6:1–11. doi: 10.1139/g64-001. DOI

Lukaszewski A.J., Apolinarska B., Gustafson J.P., Krolow K.D. Chromosome-pairing and aneuploidy in tetraploid triticale 1. Stabilized karyotypes. Genome. 1987;29:554–561. doi: 10.1139/g87-093. DOI

Orellana J., Cermeno M.C., Lacadena J.R. Meiotic pairing in wheat-rye addition and substitution lines. Can. J. Genet. Cytol. 1984;26:25–33. doi: 10.1139/g84-005. DOI

Lukaszewski A.J., Gustafson J.P. Cytogenetics of Triticale. Plant Breed. Rev. 1987;5:41–93.

Murphy S.P., Bass H.W. The maize (Zea mays) desynaptic (dy) mutation defines a pathway for meiotic chromosome segregation, linking nuclear morphology, telomere distribution and synapsis. J. Cell Sci. 2012;125:3681–3690. doi: 10.1242/jcs.108290. PubMed DOI

Naranjo T. Dynamics of Rye Telomeres in a Wheat Background during Early Meiosis. Cytogenet. Genome Res. 2014;143:60–68. doi: 10.1159/000363524. PubMed DOI

Pernickova K., Linc G., Gaal E., Kopecky D., Samajova O., Lukaszewski A.J. Out-of-position telomeres in meiotic leptotene appear responsible for chiasmate pairing in an inversion heterozygote in wheat (Triticum aestivum L.) Chromosoma. 2019;128:31–39. doi: 10.1007/s00412-018-0686-5. PubMed DOI

Schlegel R., Melz G., Nestrowicz R. A universal reference karyotype in rye, Secale cereale L. Theor. Appl. Genet. 1987;74:820–826. doi: 10.1007/BF00247563. PubMed DOI

Naranjo T. Variable Patterning of Chromatin Remodeling, Telomere Positioning, Synapsis, and Chiasma Formation of Individual Rye Chromosomes in Meiosis of Wheat-Rye Additions. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.00880. PubMed DOI PMC

Gill B.S., Friebe B., Endo T.R. Standard karyotype and nomenclature system for description of chromosome bands and structural abberations in wheat (Triticum aestivum) Genome. 1991;34:830–839. doi: 10.1139/g91-128. DOI

Doležel J., Greilhuber J., Lucretti S., Meister A., Lysák M.A., Nardi L., Obermayer R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann. Bot. 1998;82:17–26. doi: 10.1093/oxfordjournals.aob.a010312. DOI

Lukaszewski A.J. Unexpected behavior of an inverted rye chromosome arm in wheat. Chromosoma. 2008;117:569–578. doi: 10.1007/s00412-008-0174-4. PubMed DOI

Kopecky D., Loureiro J., Zwierzykowski Z., Ghesquiere M., Dolezel J. Genome constitution and evolution in Lolium x Festuca hybrid cultivars (Festulolium) Theor. Appl. Genet. 2006;113:731–742. doi: 10.1007/s00122-006-0341-z. PubMed DOI

Zwierzykowski Z., Kosmala A., Zwierzykowska E., Jones N., Joks W., Bocianowski J. Genome balance in six successive generations of the allotetraploid Festuca pratensis x Lolium perenne. Theor. Appl. Genet. 2006;113:539–547. doi: 10.1007/s00122-006-0322-2. PubMed DOI

Alleva B., Smolikove S. Moving and stopping: Regulation of chromosome movement to promote meiotic chromosome pairing and synapsis. Cell. 2017;8:613–624. doi: 10.1080/19491034.2017.1358329. PubMed DOI PMC

Schlegel R., Mettin D. Studies on intraindividual and interindividual variation of chromosome-pairing in diploid and tetraploid populations. 2. interindividual variation. Biol. Zbl. 1975;94:703–715.

Schlegel R. Rye: Genetics, Breeding, and Cultivation. CRC Press; Boca Raton, FL, USA: 2014. p. 359.

Naranjo T., Valenzuela N.T., Perera E. Chiasma Frequency Is Region Specific and Chromosome Conformation Dependent in a Rye Chromosome Added to Wheat. Cytogenet. Genome Res. 2010;129:133–143. doi: 10.1159/000314029. PubMed DOI

Lukaszewski A.J. Behavior of centromeres in univalents and centric misdivision in wheat. Cytogenet. Genome Res. 2010;129:97–109. doi: 10.1159/000314108. PubMed DOI

Bridges C.B. Deficiency. Genetics. 1917;2:445–465. PubMed PMC

Vrana J., Simkova H., Kubalakova M., Cihalikova J., Dolezel J. Flow cytometric chromosome sorting in plants: The next generation. Methods. 2012;57:331–337. doi: 10.1016/j.ymeth.2012.03.006. PubMed DOI

Ito H., Nasuda S., Endo T.R. A direct repeat sequence associated with the centromeric retrotransposons in wheat. Genome. 2004;47:747–756. doi: 10.1139/g04-034. PubMed DOI

Phillips D., Nibau C., Ramsay L., Waugh R., Jenkins G. Development of a Molecular Cytogenetic Recombination Assay for Barley. Cytogenet. Genome Res. 2010;129:154–161. doi: 10.1159/000314335. PubMed DOI

Howe E.S., Murphy S.P., Bass H.W. Three-Dimensional Acrylamide Fluorescence in Situ Hybridization for Plant Cells. In: Pawlowski W., Grelon M., Armstrong S., editors. Plant Meiosis. Methods and Protocols. Springer International Publishing AG; Dordrecht, The Netherlands: 2014. pp. 53–66.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...