Different Effects of Cyclical Ketogenic vs. Nutritionally Balanced Reduction Diet on Serum Concentrations of Myokines in Healthy Young Males Undergoing Combined Resistance/Aerobic Training
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu randomizované kontrolované studie, časopisecké články
Grantová podpora
IN 00023001
Institute of Clinical and Experimental Medicine
RVO VFN 64165
General University Hospital in Prague
LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases (Programme EXCELES)
PubMed
37049560
PubMed Central
PMC10096784
DOI
10.3390/nu15071720
PII: nu15071720
Knihovny.cz E-zdroje
- Klíčová slova
- adipokines, body composition, cytokines, endurance, ketogenic diet, myokines, strength parameters, training,
- MeSH
- chronická renální insuficience * MeSH
- cytokiny MeSH
- ketogenní dieta * MeSH
- lidé MeSH
- odporový trénink * MeSH
- osteonektin MeSH
- redukční dieta MeSH
- složení těla fyziologie MeSH
- svalová síla fyziologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- cytokiny MeSH
- osteonektin MeSH
Myokines represent important regulators of muscle metabolism. Our study aimed to explore the effects of a cyclical ketogenic reduction diet (CKD) vs. a nutritionally balanced reduction diet (RD) combined with regular resistance/aerobic training in healthy young males on serum concentrations of myokines and their potential role in changes in physical fitness. Twenty-five subjects undergoing regular resistance/aerobic training were randomized to the CKD (n = 13) or RD (n = 12) groups. Anthropometric and spiroergometric parameters, muscle strength, biochemical parameters, and serum concentrations of myokines and cytokines were assessed at baseline and after 8 weeks of intervention. Both diets reduced body weight, body fat, and BMI. Muscle strength and endurance performance were improved only by RD. Increased musclin (32.9 pg/mL vs. 74.5 pg/mL, p = 0.028) and decreased osteonectin levels (562 pg/mL vs. 511 pg/mL, p = 0.023) were observed in RD but not in the CKD group. In contrast, decreased levels of FGF21 (181 pg/mL vs. 86.4 pg/mL, p = 0.003) were found in the CKD group only. Other tested myokines and cytokines were not significantly affected by the intervention. Our data suggest that changes in systemic osteonectin and musclin levels could contribute to improved muscle strength and endurance performance and partially explain the differential effects of CKD and RD on physical fitness.
Zobrazit více v PubMed
Mujika I. Case Study: Long-Term Low-Carbohydrate, High-Fat Diet Impairs Performance and Subjective Well-Being in a World-Class Vegetarian Long-Distance Triathlete. Int. J. Sport Nutr. Exerc. Metab. 2019;29:339–344. doi: 10.1123/ijsnem.2018-0124. PubMed DOI
Hector A.J., Phillips S.M. Protein Recommendations for Weight Loss in Elite Athletes: A Focus on Body Composition and Performance. Int. J. Sport Nutr. Exerc. Metab. 2018;28:170–177. doi: 10.1123/ijsnem.2017-0273. PubMed DOI
Freire R. Scientific evidence of diets for weight loss: Different macronutrient composition, intermittent fasting, and popular diets. Nutrition. 2020;69:110549. doi: 10.1016/j.nut.2019.07.001. PubMed DOI
Yi D.Y., Kim S.C., Lee J.H., Lee E.H., Kim J.Y., Kim Y.J., Kang K.S., Hong J., Shim J.O., Lee Y., et al. Clinical practice guideline for the diagnosis and treatment of pediatric obesity: Recommendations from the Committee on Pediatric Obesity of the Korean Society of Pediatric Gastroenterology Hepatology and Nutrition. Korean J. Pediatr. 2019;62:3–21. doi: 10.3345/kjp.2018.07360. PubMed DOI PMC
Seo M.H., Lee W.Y., Kim S.S., Kang J.H., Kang J.H., Kim K.K., Kim B.Y., Kim Y.H., Kim W.J., Kim E.M., et al. 2018 Korean Society for the Study of Obesity Guideline for the Management of Obesity in Korea. J. Obes. Metab. Syndr. 2019;28:40–45. doi: 10.7570/jomes.2019.28.1.40. PubMed DOI PMC
Kim J.Y. Optimal Diet Strategies for Weight Loss and Weight Loss Maintenance. J. Obes. Metab. Syndr. 2021;30:20–31. doi: 10.7570/jomes20065. PubMed DOI PMC
Burke L.M. Ketogenic low-CHO, high-fat diet: The future of elite endurance sport? J. Physiol. 2021;599:819–843. doi: 10.1113/JP278928. PubMed DOI PMC
Ruiz-Castellano C., Espinar S., Contreras C., Mata F., Aragon A.A., Martinez-Sanz J.M. Achieving an Optimal Fat Loss Phase in Resistance-Trained Athletes: A Narrative Review. Nutrients. 2021;13:3255. doi: 10.3390/nu13093255. PubMed DOI PMC
Kirk B., Feehan J., Lombardi G., Duque G. Muscle, Bone, and Fat Crosstalk: The Biological Role of Myokines, Osteokines, and Adipokines. Curr. Osteoporos. Rep. 2020;18:388–400. doi: 10.1007/s11914-020-00599-y. PubMed DOI
Severinsen M.C.K., Pedersen B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020;41:594–609. doi: 10.1210/endrev/bnaa016. PubMed DOI PMC
Watanabe-Takano H., Ochi H., Chiba A., Matsuo A., Kanai Y., Fukuhara S., Ito N., Sako K., Miyazaki T., Tainaka K., et al. Mechanical load regulates bone growth via periosteal Osteocrin. Cell Rep. 2021;36:109380. doi: 10.1016/j.celrep.2021.109380. PubMed DOI
Kanai Y., Yasoda A., Mori K.P., Watanabe-Takano H., Nagai-Okatani C., Yamashita Y., Hirota K., Ueda Y., Yamauchi I., Kondo E., et al. Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance. J. Clin. Investig. 2017;127:4136–4147. doi: 10.1172/JCI94912. PubMed DOI PMC
Bord S., Ireland D.C., Moffatt P., Thomas G.P., Compston J.E. Characterization of osteocrin expression in human bone. J. Histochem. Cytochem. 2005;53:1181–1187. doi: 10.1369/jhc.4C6561.2005. PubMed DOI
Hu C., Zhang X., Zhang N., Wei W.Y., Li L.L., Ma Z.G., Tang Q.Z. Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity. Clin. Transl. Med. 2020;10:e124. doi: 10.1002/ctm2.124. PubMed DOI PMC
Jorgensen L.H., Petersson S.J., Sellathurai J., Andersen D.C., Thayssen S., Sant D.J., Jensen C.H., Schroder H.D. Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J. Histochem. Cytochem. 2009;57:29–39. doi: 10.1369/jhc.2008.951954. PubMed DOI PMC
Jorgensen L.H., Jepsen P.L., Boysen A., Dalgaard L.B., Hvid L.G., Ortenblad N., Ravn D., Sellathurai J., Moller-Jensen J., Lochmuller H., et al. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo. Am. J. Pathol. 2017;187:457–474. doi: 10.1016/j.ajpath.2016.10.013. PubMed DOI
Morrissey M.A., Jayadev R., Miley G.R., Blebea C.A., Chi Q., Ihara S., Sherwood D.R. SPARC Promotes Cell Invasion In Vivo by Decreasing Type IV Collagen Levels in the Basement Membrane. PLoS Genet. 2016;12:e1005905. doi: 10.1371/journal.pgen.1005905. PubMed DOI PMC
Oost L.J., Kustermann M., Armani A., Blaauw B., Romanello V. Fibroblast growth factor 21 controls mitophagy and muscle mass. J. Cachexia Sarcopenia Muscle. 2019;10:630–642. doi: 10.1002/jcsm.12409. PubMed DOI PMC
Uddin M.S., Kabir M.T., Tewari D., Al Mamun A., Barreto G.E., Bungau S.G., Bin-Jumah M.N., Abdel-Daim M.M., Ashraf G.M. Emerging Therapeutic Promise of Ketogenic Diet to Attenuate Neuropathological Alterations in Alzheimer’s Disease. Mol. Neurobiol. 2020;57:4961–4977. doi: 10.1007/s12035-020-02065-3. PubMed DOI
Tabaie E.A., Reddy A.J., Brahmbhatt H. A narrative review on the effects of a ketogenic diet on patients with Alzheimer’s disease. AIMS Public Health. 2022;9:185–193. doi: 10.3934/publichealth.2022014. PubMed DOI PMC
Abduljawad A.A., Elawad M.A., Elkhalifa M.E.M., Ahmed A., Hamdoon A.A.E., Salim L.H.M., Ashraf M., Ayaz M., Hassan S.S.U., Bungau S. Alzheimer’s Disease as a Major Public Health Concern: Role of Dietary Saponins in Mitigating Neurodegenerative Disorders and Their Underlying Mechanisms. Molecules. 2022;27:6804. doi: 10.3390/molecules27206804. PubMed DOI PMC
Li Y.P., Reid M.B. Effect of tumor necrosis factor-alpha on skeletal muscle metabolism. Curr. Opin. Rheumatol. 2001;13:483–487. doi: 10.1097/00002281-200111000-00005. PubMed DOI
Kumar S., Behl T., Sachdeva M., Sehgal A., Kumari S., Kumar A., Kaur G., Yadav H.N., Bungau S. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci. 2021;264:118661. doi: 10.1016/j.lfs.2020.118661. PubMed DOI
Ghitea T.C., Aleya L., Tit D.M., Behl T., Stoicescu M., Sava C., Iovan C., El-Kharoubi A., Uivarosan D., Pallag A., et al. Influence of diet and sport on the risk of sleep apnea in patients with metabolic syndrome associated with hypothyroidism—A 4-year survey. Environ. Sci. Pollut. Res. Int. 2022;29:23158–23168. doi: 10.1007/s11356-021-17589-x. PubMed DOI
Popescu-Spineni D.M., Guja L., Cristache C.M., Pop-Tudose M.E., Munteanu A.M. The Influence of Endocannabinoid System on Women Reproduction. Acta Endocrinol. 2022;18:209–215. doi: 10.4183/aeb.2022.209. PubMed DOI PMC
Karasu T., Marczylo T.H., Maccarrone M., Konje J.C. The role of sex steroid hormones, cytokines and the endocannabinoid system in female fertility. Hum. Reprod. Update. 2011;17:347–361. doi: 10.1093/humupd/dmq058. PubMed DOI
Leal L.G., Lopes M.A., Batista M.L., Jr. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front. Physiol. 2018;9:1307. doi: 10.3389/fphys.2018.01307. PubMed DOI PMC
Kysel P., Haluzikova D., Dolezalova R.P., Lankova I., Lacinova Z., Kasperova B.J., Trnovska J., Hradkova V., Mraz M., Vilikus Z., et al. The Influence of Cyclical Ketogenic Reduction Diet vs. Nutritionally Balanced Reduction Diet on Body Composition, Strength, and Endurance Performance in Healthy Young Males: A Randomized Controlled Trial. Nutrients. 2020;12:2832. doi: 10.3390/nu12092832. PubMed DOI PMC
World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. [(accessed on 2 January 2023)]. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
FDA (U.S. Food and Drug Administration) Guidance for the Clinical Evaluation of Weight-Control Drugs. FDA; Rockville, MD, USA: 1996.
Lee J.H., Jun H.S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front. Physiol. 2019;10:42. doi: 10.3389/fphys.2019.00042. PubMed DOI PMC
Eckel J. Myokines in metabolic homeostasis and diabetes. Diabetologia. 2019;62:1523–1528. doi: 10.1007/s00125-019-4927-9. PubMed DOI
Subbotina E., Sierra A., Zhu Z., Gao Z., Koganti S.R., Reyes S., Stepniak E., Walsh S.A., Acevedo M.R., Perez-Terzic C.M., et al. Musclin is an activity-stimulated myokine that enhances physical endurance. Proc. Natl. Acad. Sci. USA. 2015;112:16042–16047. doi: 10.1073/pnas.1514250112. PubMed DOI PMC
Sierra A.P.R., Fontes-Junior A.A., Paz I.A., de Sousa C.A.Z., Manoel L., Menezes D.C., Rocha V.A., Barbeiro H.V., Souza H.P., Cury-Boaventura M.F. Chronic Low or High Nutrient Intake and Myokine Levels. Nutrients. 2022;15:153. doi: 10.3390/nu15010153. PubMed DOI PMC
Yan Q., Sage E.H. SPARC, a matricellular glycoprotein with important biological functions. J. Histochem. Cytochem. 1999;47:1495–1506. doi: 10.1177/002215549904701201. PubMed DOI
Ghanemi A., Melouane A., Yoshioka M., St-Amand J. Secreted Protein Acidic and Rich in Cysteine (Sparc) KO Leads to an Accelerated Ageing Phenotype Which Is Improved by Exercise Whereas SPARC Overexpression Mimics Exercise Effects in Mice. Metabolites. 2022;12:125. doi: 10.3390/metabo12020125. PubMed DOI PMC
Aoi W., Naito Y., Takagi T., Tanimura Y., Takanami Y., Kawai Y., Sakuma K., Hang L.P., Mizushima K., Hirai Y., et al. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut. 2013;62:882–889. doi: 10.1136/gutjnl-2011-300776. PubMed DOI
Velingkar A., Vuree S., Prabhakar P.K., Kalshikam R.R., Kondeti S. Fibroblast Growth Factor 21 as a Potential Master Regulator in Metabolic Disorders. Am. J. Physiol. Endocrinol. Metab. 2023 doi: 10.1152/ajpendo.00244.2022. PubMed DOI
Potthoff M.J., Inagaki T., Satapati S., Ding X., He T., Goetz R., Mohammadi M., Finck B.N., Mangelsdorf D.J., Kliewer S.A., et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA. 2009;106:10853–10858. doi: 10.1073/pnas.0904187106. PubMed DOI PMC
Porflitt-Rodriguez M., Guzman-Arriagada V., Sandoval-Valderrama R., Tam C.S., Pavicic F., Ehrenfeld P., Martinez-Huenchullan S. Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. Metabolism. 2022;129:155137. doi: 10.1016/j.metabol.2022.155137. PubMed DOI
Matsui M., Kosaki K., Tanahashi K., Akazawa N., Osuka Y., Tanaka K., Kuro O.M., Maeda S. Relationship between physical activity and circulating fibroblast growth factor 21 in middle-aged and older adults. Exp. Gerontol. 2020;141:111081. doi: 10.1016/j.exger.2020.111081. PubMed DOI
Atakan M.M., Kosar S.N., Guzel Y., Tin H.T., Yan X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients. 2021;13:1459. doi: 10.3390/nu13051459. PubMed DOI PMC
Pedersen B.K., Febbraio M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012;8:457–465. doi: 10.1038/nrendo.2012.49. PubMed DOI
Cipryan L., Dostal T., Plews D.J., Hofmann P., Laursen P.B. Adiponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: A non-randomized, parallel design study. Nutr. Res. 2021;87:22–30. doi: 10.1016/j.nutres.2020.12.012. PubMed DOI
Hansen N.W., Hansen A.J., Sams A. The endothelial border to health: Mechanistic evidence of the hyperglycemic culprit of inflammatory disease acceleration. IUBMB Life. 2017;69:148–161. doi: 10.1002/iub.1610. PubMed DOI
Summer S.S., Brehm B.J., Benoit S.C., D’Alessio D.A. Adiponectin changes in relation to the macronutrient composition of a weight-loss diet. Obesity. 2011;19:2198–2204. doi: 10.1038/oby.2011.60. PubMed DOI
Ruth M.R., Port A.M., Shah M., Bourland A.C., Istfan N.W., Nelson K.P., Gokce N., Apovian C.M. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism. 2013;62:1779–1787. doi: 10.1016/j.metabol.2013.07.006. PubMed DOI PMC
Sajoux I., Lorenzo P.M., Gomez-Arbelaez D., Zulet M.A., Abete I., Castro A.I., Baltar J., Portillo M.P., Tinahones F.J., Martinez J.A., et al. Effect of a Very-Low-Calorie Ketogenic Diet on Circulating Myokine Levels Compared with the Effect of Bariatric Surgery or a Low-Calorie Diet in Patients with Obesity. Nutrients. 2019;11:2368. doi: 10.3390/nu11102368. PubMed DOI PMC
Paoli A., Moro T., Bosco G., Bianco A., Grimaldi K.A., Camporesi E., Mangar D. Effects of n-3 polyunsaturated fatty acids (omega-3) supplementation on some cardiovascular risk factors with a ketogenic Mediterranean diet. Mar. Drugs. 2015;13:996–1009. doi: 10.3390/md13020996. PubMed DOI PMC
Paoli A., Cenci L., Pompei P., Sahin N., Bianco A., Neri M., Caprio M., Moro T. Effects of Two Months of Very Low Carbohydrate Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, and Blood Parameters in Competitive Natural Body Builders. Nutrients. 2021;13:374. doi: 10.3390/nu13020374. PubMed DOI PMC