Different Effects of Cyclical Ketogenic vs. Nutritionally Balanced Reduction Diet on Serum Concentrations of Myokines in Healthy Young Males Undergoing Combined Resistance/Aerobic Training

. 2023 Mar 31 ; 15 (7) : . [epub] 20230331

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu randomizované kontrolované studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37049560

Grantová podpora
IN 00023001 Institute of Clinical and Experimental Medicine
RVO VFN 64165 General University Hospital in Prague
LX22NPO5104 National Institute for Research of Metabolic and Cardiovascular Diseases (Programme EXCELES)

Myokines represent important regulators of muscle metabolism. Our study aimed to explore the effects of a cyclical ketogenic reduction diet (CKD) vs. a nutritionally balanced reduction diet (RD) combined with regular resistance/aerobic training in healthy young males on serum concentrations of myokines and their potential role in changes in physical fitness. Twenty-five subjects undergoing regular resistance/aerobic training were randomized to the CKD (n = 13) or RD (n = 12) groups. Anthropometric and spiroergometric parameters, muscle strength, biochemical parameters, and serum concentrations of myokines and cytokines were assessed at baseline and after 8 weeks of intervention. Both diets reduced body weight, body fat, and BMI. Muscle strength and endurance performance were improved only by RD. Increased musclin (32.9 pg/mL vs. 74.5 pg/mL, p = 0.028) and decreased osteonectin levels (562 pg/mL vs. 511 pg/mL, p = 0.023) were observed in RD but not in the CKD group. In contrast, decreased levels of FGF21 (181 pg/mL vs. 86.4 pg/mL, p = 0.003) were found in the CKD group only. Other tested myokines and cytokines were not significantly affected by the intervention. Our data suggest that changes in systemic osteonectin and musclin levels could contribute to improved muscle strength and endurance performance and partially explain the differential effects of CKD and RD on physical fitness.

Zobrazit více v PubMed

Mujika I. Case Study: Long-Term Low-Carbohydrate, High-Fat Diet Impairs Performance and Subjective Well-Being in a World-Class Vegetarian Long-Distance Triathlete. Int. J. Sport Nutr. Exerc. Metab. 2019;29:339–344. doi: 10.1123/ijsnem.2018-0124. PubMed DOI

Hector A.J., Phillips S.M. Protein Recommendations for Weight Loss in Elite Athletes: A Focus on Body Composition and Performance. Int. J. Sport Nutr. Exerc. Metab. 2018;28:170–177. doi: 10.1123/ijsnem.2017-0273. PubMed DOI

Freire R. Scientific evidence of diets for weight loss: Different macronutrient composition, intermittent fasting, and popular diets. Nutrition. 2020;69:110549. doi: 10.1016/j.nut.2019.07.001. PubMed DOI

Yi D.Y., Kim S.C., Lee J.H., Lee E.H., Kim J.Y., Kim Y.J., Kang K.S., Hong J., Shim J.O., Lee Y., et al. Clinical practice guideline for the diagnosis and treatment of pediatric obesity: Recommendations from the Committee on Pediatric Obesity of the Korean Society of Pediatric Gastroenterology Hepatology and Nutrition. Korean J. Pediatr. 2019;62:3–21. doi: 10.3345/kjp.2018.07360. PubMed DOI PMC

Seo M.H., Lee W.Y., Kim S.S., Kang J.H., Kang J.H., Kim K.K., Kim B.Y., Kim Y.H., Kim W.J., Kim E.M., et al. 2018 Korean Society for the Study of Obesity Guideline for the Management of Obesity in Korea. J. Obes. Metab. Syndr. 2019;28:40–45. doi: 10.7570/jomes.2019.28.1.40. PubMed DOI PMC

Kim J.Y. Optimal Diet Strategies for Weight Loss and Weight Loss Maintenance. J. Obes. Metab. Syndr. 2021;30:20–31. doi: 10.7570/jomes20065. PubMed DOI PMC

Burke L.M. Ketogenic low-CHO, high-fat diet: The future of elite endurance sport? J. Physiol. 2021;599:819–843. doi: 10.1113/JP278928. PubMed DOI PMC

Ruiz-Castellano C., Espinar S., Contreras C., Mata F., Aragon A.A., Martinez-Sanz J.M. Achieving an Optimal Fat Loss Phase in Resistance-Trained Athletes: A Narrative Review. Nutrients. 2021;13:3255. doi: 10.3390/nu13093255. PubMed DOI PMC

Kirk B., Feehan J., Lombardi G., Duque G. Muscle, Bone, and Fat Crosstalk: The Biological Role of Myokines, Osteokines, and Adipokines. Curr. Osteoporos. Rep. 2020;18:388–400. doi: 10.1007/s11914-020-00599-y. PubMed DOI

Severinsen M.C.K., Pedersen B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020;41:594–609. doi: 10.1210/endrev/bnaa016. PubMed DOI PMC

Watanabe-Takano H., Ochi H., Chiba A., Matsuo A., Kanai Y., Fukuhara S., Ito N., Sako K., Miyazaki T., Tainaka K., et al. Mechanical load regulates bone growth via periosteal Osteocrin. Cell Rep. 2021;36:109380. doi: 10.1016/j.celrep.2021.109380. PubMed DOI

Kanai Y., Yasoda A., Mori K.P., Watanabe-Takano H., Nagai-Okatani C., Yamashita Y., Hirota K., Ueda Y., Yamauchi I., Kondo E., et al. Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance. J. Clin. Investig. 2017;127:4136–4147. doi: 10.1172/JCI94912. PubMed DOI PMC

Bord S., Ireland D.C., Moffatt P., Thomas G.P., Compston J.E. Characterization of osteocrin expression in human bone. J. Histochem. Cytochem. 2005;53:1181–1187. doi: 10.1369/jhc.4C6561.2005. PubMed DOI

Hu C., Zhang X., Zhang N., Wei W.Y., Li L.L., Ma Z.G., Tang Q.Z. Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity. Clin. Transl. Med. 2020;10:e124. doi: 10.1002/ctm2.124. PubMed DOI PMC

Jorgensen L.H., Petersson S.J., Sellathurai J., Andersen D.C., Thayssen S., Sant D.J., Jensen C.H., Schroder H.D. Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J. Histochem. Cytochem. 2009;57:29–39. doi: 10.1369/jhc.2008.951954. PubMed DOI PMC

Jorgensen L.H., Jepsen P.L., Boysen A., Dalgaard L.B., Hvid L.G., Ortenblad N., Ravn D., Sellathurai J., Moller-Jensen J., Lochmuller H., et al. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo. Am. J. Pathol. 2017;187:457–474. doi: 10.1016/j.ajpath.2016.10.013. PubMed DOI

Morrissey M.A., Jayadev R., Miley G.R., Blebea C.A., Chi Q., Ihara S., Sherwood D.R. SPARC Promotes Cell Invasion In Vivo by Decreasing Type IV Collagen Levels in the Basement Membrane. PLoS Genet. 2016;12:e1005905. doi: 10.1371/journal.pgen.1005905. PubMed DOI PMC

Oost L.J., Kustermann M., Armani A., Blaauw B., Romanello V. Fibroblast growth factor 21 controls mitophagy and muscle mass. J. Cachexia Sarcopenia Muscle. 2019;10:630–642. doi: 10.1002/jcsm.12409. PubMed DOI PMC

Uddin M.S., Kabir M.T., Tewari D., Al Mamun A., Barreto G.E., Bungau S.G., Bin-Jumah M.N., Abdel-Daim M.M., Ashraf G.M. Emerging Therapeutic Promise of Ketogenic Diet to Attenuate Neuropathological Alterations in Alzheimer’s Disease. Mol. Neurobiol. 2020;57:4961–4977. doi: 10.1007/s12035-020-02065-3. PubMed DOI

Tabaie E.A., Reddy A.J., Brahmbhatt H. A narrative review on the effects of a ketogenic diet on patients with Alzheimer’s disease. AIMS Public Health. 2022;9:185–193. doi: 10.3934/publichealth.2022014. PubMed DOI PMC

Abduljawad A.A., Elawad M.A., Elkhalifa M.E.M., Ahmed A., Hamdoon A.A.E., Salim L.H.M., Ashraf M., Ayaz M., Hassan S.S.U., Bungau S. Alzheimer’s Disease as a Major Public Health Concern: Role of Dietary Saponins in Mitigating Neurodegenerative Disorders and Their Underlying Mechanisms. Molecules. 2022;27:6804. doi: 10.3390/molecules27206804. PubMed DOI PMC

Li Y.P., Reid M.B. Effect of tumor necrosis factor-alpha on skeletal muscle metabolism. Curr. Opin. Rheumatol. 2001;13:483–487. doi: 10.1097/00002281-200111000-00005. PubMed DOI

Kumar S., Behl T., Sachdeva M., Sehgal A., Kumari S., Kumar A., Kaur G., Yadav H.N., Bungau S. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci. 2021;264:118661. doi: 10.1016/j.lfs.2020.118661. PubMed DOI

Ghitea T.C., Aleya L., Tit D.M., Behl T., Stoicescu M., Sava C., Iovan C., El-Kharoubi A., Uivarosan D., Pallag A., et al. Influence of diet and sport on the risk of sleep apnea in patients with metabolic syndrome associated with hypothyroidism—A 4-year survey. Environ. Sci. Pollut. Res. Int. 2022;29:23158–23168. doi: 10.1007/s11356-021-17589-x. PubMed DOI

Popescu-Spineni D.M., Guja L., Cristache C.M., Pop-Tudose M.E., Munteanu A.M. The Influence of Endocannabinoid System on Women Reproduction. Acta Endocrinol. 2022;18:209–215. doi: 10.4183/aeb.2022.209. PubMed DOI PMC

Karasu T., Marczylo T.H., Maccarrone M., Konje J.C. The role of sex steroid hormones, cytokines and the endocannabinoid system in female fertility. Hum. Reprod. Update. 2011;17:347–361. doi: 10.1093/humupd/dmq058. PubMed DOI

Leal L.G., Lopes M.A., Batista M.L., Jr. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front. Physiol. 2018;9:1307. doi: 10.3389/fphys.2018.01307. PubMed DOI PMC

Kysel P., Haluzikova D., Dolezalova R.P., Lankova I., Lacinova Z., Kasperova B.J., Trnovska J., Hradkova V., Mraz M., Vilikus Z., et al. The Influence of Cyclical Ketogenic Reduction Diet vs. Nutritionally Balanced Reduction Diet on Body Composition, Strength, and Endurance Performance in Healthy Young Males: A Randomized Controlled Trial. Nutrients. 2020;12:2832. doi: 10.3390/nu12092832. PubMed DOI PMC

World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. [(accessed on 2 January 2023)]. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/

FDA (U.S. Food and Drug Administration) Guidance for the Clinical Evaluation of Weight-Control Drugs. FDA; Rockville, MD, USA: 1996.

Lee J.H., Jun H.S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front. Physiol. 2019;10:42. doi: 10.3389/fphys.2019.00042. PubMed DOI PMC

Eckel J. Myokines in metabolic homeostasis and diabetes. Diabetologia. 2019;62:1523–1528. doi: 10.1007/s00125-019-4927-9. PubMed DOI

Subbotina E., Sierra A., Zhu Z., Gao Z., Koganti S.R., Reyes S., Stepniak E., Walsh S.A., Acevedo M.R., Perez-Terzic C.M., et al. Musclin is an activity-stimulated myokine that enhances physical endurance. Proc. Natl. Acad. Sci. USA. 2015;112:16042–16047. doi: 10.1073/pnas.1514250112. PubMed DOI PMC

Sierra A.P.R., Fontes-Junior A.A., Paz I.A., de Sousa C.A.Z., Manoel L., Menezes D.C., Rocha V.A., Barbeiro H.V., Souza H.P., Cury-Boaventura M.F. Chronic Low or High Nutrient Intake and Myokine Levels. Nutrients. 2022;15:153. doi: 10.3390/nu15010153. PubMed DOI PMC

Yan Q., Sage E.H. SPARC, a matricellular glycoprotein with important biological functions. J. Histochem. Cytochem. 1999;47:1495–1506. doi: 10.1177/002215549904701201. PubMed DOI

Ghanemi A., Melouane A., Yoshioka M., St-Amand J. Secreted Protein Acidic and Rich in Cysteine (Sparc) KO Leads to an Accelerated Ageing Phenotype Which Is Improved by Exercise Whereas SPARC Overexpression Mimics Exercise Effects in Mice. Metabolites. 2022;12:125. doi: 10.3390/metabo12020125. PubMed DOI PMC

Aoi W., Naito Y., Takagi T., Tanimura Y., Takanami Y., Kawai Y., Sakuma K., Hang L.P., Mizushima K., Hirai Y., et al. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut. 2013;62:882–889. doi: 10.1136/gutjnl-2011-300776. PubMed DOI

Velingkar A., Vuree S., Prabhakar P.K., Kalshikam R.R., Kondeti S. Fibroblast Growth Factor 21 as a Potential Master Regulator in Metabolic Disorders. Am. J. Physiol. Endocrinol. Metab. 2023 doi: 10.1152/ajpendo.00244.2022. PubMed DOI

Potthoff M.J., Inagaki T., Satapati S., Ding X., He T., Goetz R., Mohammadi M., Finck B.N., Mangelsdorf D.J., Kliewer S.A., et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA. 2009;106:10853–10858. doi: 10.1073/pnas.0904187106. PubMed DOI PMC

Porflitt-Rodriguez M., Guzman-Arriagada V., Sandoval-Valderrama R., Tam C.S., Pavicic F., Ehrenfeld P., Martinez-Huenchullan S. Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. Metabolism. 2022;129:155137. doi: 10.1016/j.metabol.2022.155137. PubMed DOI

Matsui M., Kosaki K., Tanahashi K., Akazawa N., Osuka Y., Tanaka K., Kuro O.M., Maeda S. Relationship between physical activity and circulating fibroblast growth factor 21 in middle-aged and older adults. Exp. Gerontol. 2020;141:111081. doi: 10.1016/j.exger.2020.111081. PubMed DOI

Atakan M.M., Kosar S.N., Guzel Y., Tin H.T., Yan X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients. 2021;13:1459. doi: 10.3390/nu13051459. PubMed DOI PMC

Pedersen B.K., Febbraio M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012;8:457–465. doi: 10.1038/nrendo.2012.49. PubMed DOI

Cipryan L., Dostal T., Plews D.J., Hofmann P., Laursen P.B. Adiponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: A non-randomized, parallel design study. Nutr. Res. 2021;87:22–30. doi: 10.1016/j.nutres.2020.12.012. PubMed DOI

Hansen N.W., Hansen A.J., Sams A. The endothelial border to health: Mechanistic evidence of the hyperglycemic culprit of inflammatory disease acceleration. IUBMB Life. 2017;69:148–161. doi: 10.1002/iub.1610. PubMed DOI

Summer S.S., Brehm B.J., Benoit S.C., D’Alessio D.A. Adiponectin changes in relation to the macronutrient composition of a weight-loss diet. Obesity. 2011;19:2198–2204. doi: 10.1038/oby.2011.60. PubMed DOI

Ruth M.R., Port A.M., Shah M., Bourland A.C., Istfan N.W., Nelson K.P., Gokce N., Apovian C.M. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism. 2013;62:1779–1787. doi: 10.1016/j.metabol.2013.07.006. PubMed DOI PMC

Sajoux I., Lorenzo P.M., Gomez-Arbelaez D., Zulet M.A., Abete I., Castro A.I., Baltar J., Portillo M.P., Tinahones F.J., Martinez J.A., et al. Effect of a Very-Low-Calorie Ketogenic Diet on Circulating Myokine Levels Compared with the Effect of Bariatric Surgery or a Low-Calorie Diet in Patients with Obesity. Nutrients. 2019;11:2368. doi: 10.3390/nu11102368. PubMed DOI PMC

Paoli A., Moro T., Bosco G., Bianco A., Grimaldi K.A., Camporesi E., Mangar D. Effects of n-3 polyunsaturated fatty acids (omega-3) supplementation on some cardiovascular risk factors with a ketogenic Mediterranean diet. Mar. Drugs. 2015;13:996–1009. doi: 10.3390/md13020996. PubMed DOI PMC

Paoli A., Cenci L., Pompei P., Sahin N., Bianco A., Neri M., Caprio M., Moro T. Effects of Two Months of Very Low Carbohydrate Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, and Blood Parameters in Competitive Natural Body Builders. Nutrients. 2021;13:374. doi: 10.3390/nu13020374. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...